期刊文献+
共找到198篇文章
< 1 2 10 >
每页显示 20 50 100
IMPROVED SINGULAR VALUE DECOMPOSITION TECHNIQUE FOR DETECTING AND EXTRACTING PERIODIC IMPULSE COMPONENT IN A VIBRATION SIGNAL 被引量:15
1
作者 LiuHongxing LiJian +1 位作者 ZhaoYing QuLiangsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第3期340-345,共6页
Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, ... Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, there may exist a corresponding local fault in themachine, and if further extracting the periodic impulse components from the vibration signals, theseverity of the local fault can be estimated and tracked. However, the signal-to-noise ratios (SNRs)of the vibration acceleration signals are often so small that the periodic impulse components aresubmersed in much background noises and other components, and it is difficult or inconvenient for usto detect and extract the periodic impulse components with the current common analyzing methods forvibration signals. Therefore, another technique, called singular value decomposition (SVD), istried to be introduced to solve the problem. First, the principle of detecting and extracting thesignal periodic components using singular value decomposition is summarized and discussed. Second,the infeasibility of the direct use of the existing SVD based detecting and extracting approach ispointed out. Third, the approach to construct the matrix for SVD from the signal series is improvedlargely, which is the key program to improve the SVD technique; Other associated improvement is alsoproposed. Finally, a simulating application example and a real-life application example ondetecting and extracting the periodic impulse components are given, which showed that the introducedand improved SVD technique is feasible. 展开更多
关键词 Fault diagnosis VIBRATION Signal processing singular value decomposition
下载PDF
Weak characteristic information extraction from early fault of wind turbine generator gearboxKeywords wind turbine generator gearbox, B-singular value decomposition, local mean decomposition, weak characteristic information extraction, early fault warning 被引量:2
2
作者 Xiaoli XU Xiuli LIU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2017年第3期357-366,共10页
Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of use... Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on μ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and μ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance. 展开更多
关键词 wind turbine generator gearbox μ-singular value decomposition local mean decomposition weak characteristic information extraction early fault warning
原文传递
Application of Improved LMD, SVD Technique and RVM to Fault Diagnosis of Diesel Valve Trains 被引量:3
3
作者 刘昱 张俊红 +1 位作者 林杰威 毕凤荣 《Transactions of Tianjin University》 EI CAS 2015年第4期304-311,共8页
Targeting the non-stationary characteristics of diesel engine vibration signals and the limitations of singular value decomposition(SVD) technique, a new method based on improved local mean decomposition(LMD), SVD tec... Targeting the non-stationary characteristics of diesel engine vibration signals and the limitations of singular value decomposition(SVD) technique, a new method based on improved local mean decomposition(LMD), SVD technique and relevance vector machine(RVM) was proposed for the identification of diesel valve fault in this study. Firstly, the vibration signals were acquired through the vibration sensors installed on the cylinder head in one normal state and four fault states of valve trains. Secondly, an improved LMD method was used to decompose the non-stationary signals into a set of stationary product functions(PF), from which the initial feature vector matrices can be formed automatically. Then, the singular values were obtained by applying the SVD technique to the initial feature vector matrixes. Finally, slant binary tree and sort separability criterion were combined to determine the structure of multi-class RVM, and the singular values were regarded as the fault feature vectors of RVM in the identification of fault types of diesel valve clearance. The experimental results showed that the proposed fault diagnosis method can effectively extract the features of diesel valve clearance and identify the diesel valve fault accurately. 展开更多
关键词 local mean decomposition (LMD) singular value decomposition (SVD) RELEVANCE vector machine(RVM) fault diagnosis
下载PDF
Impulsive component extraction using shift-invariant dictionary learning and its application to gear-box bearing early fault diagnosis 被引量:3
4
作者 ZHANG Zhao-heng DING Jian-ming +1 位作者 WU Chao LIN Jian-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期824-838,共15页
The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract ... The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing. 展开更多
关键词 gear-box bearing fault diagnosis shift-invariant K-means singular value decomposition impulsive component extraction
下载PDF
重复使用火箭涡轮泵轴承故障特征提取方法优化
5
作者 王得龙 王伟 +1 位作者 金路 王俨剀 《火箭推进》 CAS 北大核心 2024年第1期154-162,共9页
涡轮泵轴承是可重复使用火箭的关键,因此能够有效提取出轴承故障特征频率从而展开故障诊断十分重要。将奇异值分解(SVD)和包络谱解调法相结合,对火箭涡轮泵轴承展开故障特征提取。对轴承内环、外环及滚动体故障数据进行处理和分析,结果... 涡轮泵轴承是可重复使用火箭的关键,因此能够有效提取出轴承故障特征频率从而展开故障诊断十分重要。将奇异值分解(SVD)和包络谱解调法相结合,对火箭涡轮泵轴承展开故障特征提取。对轴承内环、外环及滚动体故障数据进行处理和分析,结果表明,针对信号中含有大量噪声的数据,相比传统的包络谱解调法,改进方法的故障特征提取效果明显提升。通过该方法提取出的3种故障低频特征频率的相对幅值相比于传统包络谱解调均有提升。同时,可以有效降低高频噪声的干扰,尤其在高频区依然可以看到比较明显的特征频率,而传统包络谱解调法的高频区基本被噪声覆盖。通过计算得出信号的信噪比均有60 dB以上的提升。 展开更多
关键词 涡轮泵 滚动轴承 包络谱 奇异值分解 故障特征提取
下载PDF
考虑声-振模态结合的抽水蓄能机组轴承故障诊断
6
作者 胡列豪 巩宇 +3 位作者 张勇军 安禹铮 蒋崇颖 廖美英 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期1-10,共10页
为解决抽水蓄能机组轴承磨损故障难以监测和识别的问题,提出一种结合声振数据的双模态神经网络机组轴承诊断模型。首先分析了抽水蓄能机组声振特性,融合相似软阈值对奇异值分解去噪方法进行改进,有效消除非接触式传感器固有噪声干扰。... 为解决抽水蓄能机组轴承磨损故障难以监测和识别的问题,提出一种结合声振数据的双模态神经网络机组轴承诊断模型。首先分析了抽水蓄能机组声振特性,融合相似软阈值对奇异值分解去噪方法进行改进,有效消除非接触式传感器固有噪声干扰。其次提出逆巴克频谱变换方法,并结合巴克频谱变换和格拉姆角和场变换等特征工程技术,提取机组轴承的声纹和振动特征图。通过融合相对位置编码的自注意力机制和深度可分离卷积,建立特征图传递网络。同时运用多头自注意力机制和双向长短期记忆网络搭建了时序数据传递网络,并以平行网格架构构建了机组轴承故障诊断模型。实验对比分析表明,所提方法具有较高的故障识别准确率,为抽水蓄能电站机组轴承监测问题提供了有效的解决途径。 展开更多
关键词 抽水蓄能机组 声-振模态 奇异值分解 特征工程 故障诊断
下载PDF
ISWD-SVD联合方法的变压器振动信号降噪
7
作者 尚海昆 黄涛 +3 位作者 林伟 张冉喆 李峰 刘力卿 《噪声与振动控制》 CSCD 北大核心 2024年第6期123-128,241,共7页
针对变压器有效振动信号受噪声干扰难以提取的问题,提出一种改进群分解-奇异值分解(Improved Swarm Decomposition-singular Value Decomposition,ISWD-SVD)的变压器振动信号降噪方法。该方法首先将功率谱熵负值作为目标函数,利用麻雀... 针对变压器有效振动信号受噪声干扰难以提取的问题,提出一种改进群分解-奇异值分解(Improved Swarm Decomposition-singular Value Decomposition,ISWD-SVD)的变压器振动信号降噪方法。该方法首先将功率谱熵负值作为目标函数,利用麻雀搜索算法(Sparrow Search Algorithm,SSA)寻找群分解算法(Swarm Decomposition,SWD)最优参数;然后,采用最优参数对变压器振动信号进行SWD分解,并剔除剩余分量,得到重构信号;最后,利用SVD去除重构信号中的噪声残留,实现二次降噪。通过对仿真信号与现场信号进行降噪效果验证,并与其他降噪算法进行对比分析。结果表明:ISWD-SVD联合方法对变压器振动信号具有更好的降噪效果,可为变压器机械状态检测和故障诊断提供有力依据。 展开更多
关键词 故障诊断 变压器 振动信号 改进群分解 奇异值分解 降噪
下载PDF
DHSI筛选奇异值分量在齿轮故障诊断中的应用
8
作者 杨伟新 刘飞春 +1 位作者 唐鑫 朱如鹏 《噪声与振动控制》 CSCD 北大核心 2024年第5期148-153,共6页
为有效剥离传动系统齿轮故障信号中的噪声成分,提出基于差分谐波显著指数(Differential Harmonic Significance Index,DHSI)筛选奇异值分量的齿轮故障诊断方法。该方法首先对原始信号构造Hankel矩阵,并对该矩阵进行奇异值分解,然后利用... 为有效剥离传动系统齿轮故障信号中的噪声成分,提出基于差分谐波显著指数(Differential Harmonic Significance Index,DHSI)筛选奇异值分量的齿轮故障诊断方法。该方法首先对原始信号构造Hankel矩阵,并对该矩阵进行奇异值分解,然后利用提出的一种新的奇异值突变位置判别指数,即奇异分量的差分谐波显著指数筛选奇异值的个数,并由这些奇异值分量重构信号,得到故障信号的包络谱。应用该方法分析齿轮故障仿真信号以及某型直升机传动系统并车级齿轮掉块故障信号,与基于奇异值差分谱的奇异值分量筛选结果对比表明,基于差分谐波显著指数的奇异值分量筛选能够更好地消除噪声并提取齿轮振动信号中的故障特征。 展开更多
关键词 故障诊断 谐波显著指数 奇异值分解 谐波积频谱 齿轮传动
下载PDF
SVD和复合平方包络谱的滚动轴承故障诊断
9
作者 陈琳 陶涛 李洪强 《机械设计与制造》 北大核心 2024年第3期297-304,共8页
由于传统奇异值分解故障诊断方法难以选择子信号故障点以及Hankel矩阵行数,提出了一种基于奇异值分解和复合平方包络谱的滚动轴承诊断方法。首先分析了两种常用的子信号重构方法的区别。然后引入DR指标来确定奇异值分解序列,并通过数值... 由于传统奇异值分解故障诊断方法难以选择子信号故障点以及Hankel矩阵行数,提出了一种基于奇异值分解和复合平方包络谱的滚动轴承诊断方法。首先分析了两种常用的子信号重构方法的区别。然后引入DR指标来确定奇异值分解序列,并通过数值模拟得到了轴承故障诊断的Hankel矩阵最佳行数范围。由于得到的子信号存在畸变和子信号间能量分布的奇异值分布,通过反对角平均法以及复合平方包络谱对轴承进行故障诊断。最后通过实验证明了提出方法在缺少先验知识情况下能够实现有效的轴承故障诊断。 展开更多
关键词 滚动轴承 故障诊断 奇异值分解 平方包络谱
下载PDF
基于SBF-ISVD的带式输送机声信号增强方法
10
作者 张晓东 张玉强 +2 位作者 杜方鹏 马波 游卿华 《机电工程》 CAS 北大核心 2024年第10期1875-1884,共10页
在带式输送机的声学诊断过程中,其声信号受混响及背景噪声的干扰十分严重,为此,通过分析混响产生的原因和声信号的组成等,提出了一种基于超指向性波束形成(SBF)去混响和改进奇异值分解(ISVD)降噪的声信号增强方法。首先,利用基于能量变... 在带式输送机的声学诊断过程中,其声信号受混响及背景噪声的干扰十分严重,为此,通过分析混响产生的原因和声信号的组成等,提出了一种基于超指向性波束形成(SBF)去混响和改进奇异值分解(ISVD)降噪的声信号增强方法。首先,利用基于能量变化最大值进行了最优频带选择,确定了包含故障信息较多的频带;然后,利用SBF去除了混响对声信号的干扰,采用ISVD方法对去混响后的信号进行了降噪处理,并对信号进行了包络谱分析,对比了实际测得的故障特征频率和理论的故障特征频率,对带式输送机的故障特征进行了提取;最后,设计了实验,采集了实验数据,利用该方法对煤矿现场采集到的数据进行了分析验证,并将其与加权预测误差算法(WPE)和线性约束最小方差(LCMV)相结合的方法以及递归最小二乘法(RLS)进行了对比。研究结果表明:与原信号相比,经SBF-ISVD方法处理后,实验数据包络谱中内圈故障特征频率153.1 Hz及其倍频312.5 Hz处的幅值明显提高,信噪比从-31.39 dB显著提高至-25.4 dB。基于SBF-ISVD的声信号增强方法去混响和降噪效果显著,轴承故障特征提取效果较好,可实现复杂环境噪声下带式输送机声信号增强的目的。 展开更多
关键词 皮带输送机 轴承故障诊断 声学诊断 混响消除 降噪效果 频带 超指向性波束形成 改进奇异值分解
下载PDF
基于WT和SVD的水电机组故障特征提取方法
11
作者 丁晨 刘梦 +3 位作者 王官佳 杜伟 吴凤娇 王斌 《水电与新能源》 2024年第1期75-78,共4页
针对水电机组振动信号故障特征提取难,提出一种融合小波变换(Wavelet Transform,WT)和奇异值分解(Singular Value Decomposition,SVD)相结合的故障特征提取方法。首先,通过小波阈值降噪消除强噪声对模型特征提取的干扰,再利用小波变换... 针对水电机组振动信号故障特征提取难,提出一种融合小波变换(Wavelet Transform,WT)和奇异值分解(Singular Value Decomposition,SVD)相结合的故障特征提取方法。首先,通过小波阈值降噪消除强噪声对模型特征提取的干扰,再利用小波变换将降噪信号分解成不同频率的模态子序列,应用SVD理论提起子序列的SVD值作为特征,最终将特征输入RF模型中实现水电机组故障的快速识别与诊断。通过在公开数据集和真实机组案例中应用,验证了对水电机组故障诊断的高效性。 展开更多
关键词 小波变换 奇异值分解 随机森林 特征提取 水电机组故障诊断
下载PDF
基于改进TVF-EMD与SVD的轴承故障特征提取
12
作者 石渡江 王文波 《机床与液压》 北大核心 2024年第18期218-229,共12页
滚动轴承早期故障信号微弱,故障特征难以提取。针对此问题,提出一种基于时变滤波经验模态分解(TVF-EMD)模态分量自适应融合与奇异值分解(SVD)降噪的轴承早期故障特征提取方法。为了降低故障信号的非线性和非平稳性,通过TVF-EMD将轴承信... 滚动轴承早期故障信号微弱,故障特征难以提取。针对此问题,提出一种基于时变滤波经验模态分解(TVF-EMD)模态分量自适应融合与奇异值分解(SVD)降噪的轴承早期故障特征提取方法。为了降低故障信号的非线性和非平稳性,通过TVF-EMD将轴承信号分解为一系列本征模态函数(IMF)。为了克服TVF-EMD分解后IMF分量过多的不足,构造包络故障信息能量占比(EREFI)指标,通过EREFI对IMF分量进行降序排列,并依据包络故障信息能量占比递增原则对IMF分量依次进行融合,直至找到最优融合分量。最后,通过SVD对最优融合分量降噪,并提取故障特征。通过仿真信号以及2个实测轴承故障信号对所提方法性能进行了实验验证。实验结果表明:所提方法具有良好的敏感特征筛选融合能力和降噪能力,能更准确提取出轴承早期故障特征,实现故障类型的准确识别。 展开更多
关键词 时变滤波经验模态分解(TVF-EMD) 奇异值降噪(SVD) 包络故障信息能量占比(EREFI) 故障诊断 滚动轴承
下载PDF
基于WPT-CEEMDAN-SVD的齿轮箱故障诊断
13
作者 李建航 卢永杰 +1 位作者 郭锦萍 康志新 《兰州工业学院学报》 2024年第3期75-79,106,共6页
针对在含噪声情况下难以精确地进行齿轮箱故障诊断的问题,将采集到的原始信号进行小波包分解,根据故障齿轮的啮合频率选取合适的小波包对信号进行重构,得到初步降噪信号;利用CEEMDAN对初步降噪信号进行分解,绘制各IMF分量的相关系数与... 针对在含噪声情况下难以精确地进行齿轮箱故障诊断的问题,将采集到的原始信号进行小波包分解,根据故障齿轮的啮合频率选取合适的小波包对信号进行重构,得到初步降噪信号;利用CEEMDAN对初步降噪信号进行分解,绘制各IMF分量的相关系数与峰度变化曲线图并选择相关系数较大的分量进行重构;通过奇异值分解对信号进一步降噪,并对最终信号频谱图对比分析,判断故障部位及类型。结果表明:该方法能根据实际需求有效提取到特定频率段内的特征频率谱线,优于直接对信号使用时频分析进行处理的结果。 展开更多
关键词 故障诊断 自适应噪声完备集合经验模态分解 奇异值分解 小波包分解
下载PDF
基于截断高阶奇异值分解的电机多轴承故障诊断
14
作者 郭岱乔 《防爆电机》 2024年第5期13-15,共3页
电机在运行过程中轴承承担着高频载荷运动,单一通道信号识别无法保障故障识别精度。为了进一步降低轴承多通道信号滤波干,设计了一种基于截断高阶奇异值分解(HOSVD)的电机多轴承故障诊断方法。通过多通道故障降噪方法对多通道信号实施... 电机在运行过程中轴承承担着高频载荷运动,单一通道信号识别无法保障故障识别精度。为了进一步降低轴承多通道信号滤波干,设计了一种基于截断高阶奇异值分解(HOSVD)的电机多轴承故障诊断方法。通过多通道故障降噪方法对多通道信号实施滤波处理。三个轴承故障实例表明,域内特征无法针对轴承的健康状态进行有效的识别。该方法可以同时提取大量通道中的外圈和内圈故障特征,比较理想地提取出大量通道轴承外、内的故障特征,所提方法的有效性得到验证。 展开更多
关键词 电机轴承 多通道信号 故障诊断 截断高阶奇异值分解 降噪
下载PDF
基于小波变换和奇异值分解的串联电弧故障检测方法 被引量:57
15
作者 卢其威 王涛 +1 位作者 李宗睿 王聪 《电工技术学报》 EI CSCD 北大核心 2017年第17期208-217,共10页
根据线路中电流信号的变化来检测电弧故障,小波变换是一种常用的检测方法,但是单纯利用小波变换对于正常情况和电弧故障的区分并不明显,而且其结果存在很大的冗余。针对这一问题,提出了采用一种基于小波变换和奇异值分解的串联电弧故障... 根据线路中电流信号的变化来检测电弧故障,小波变换是一种常用的检测方法,但是单纯利用小波变换对于正常情况和电弧故障的区分并不明显,而且其结果存在很大的冗余。针对这一问题,提出了采用一种基于小波变换和奇异值分解的串联电弧故障检测的方法。利用电弧模拟发生装置产生串联故障电弧,采集在多种负载下线路正常工作和发生串联电弧故障时的电流。首先对采集的电流信号进行离散小波变换,得到离散小波系数序列,构造特征矩阵;然后对特征矩阵进行奇异值分解,并定义电流信号的特征参数,利用特征参数作为串联电弧故障检测的依据。试验结果表明:正常情况和电弧故障下的特征参数区分明显且没有交叉,易于确定阈值,利用该方法进行串联电弧故障检测的准确率较高,且大大压缩了小波变换结果的冗余性。 展开更多
关键词 电弧故障 小波变换 奇异值分解 特征参数 检测
下载PDF
基于EMD和SSAE的滚动轴承故障诊断方法 被引量:31
16
作者 王奉涛 邓刚 +3 位作者 王洪涛 于晓光 韩清凯 李宏坤 《振动工程学报》 EI CSCD 北大核心 2019年第2期368-376,共9页
深度学习以其强大的特征提取能力展现了它在故障诊断领域的绝对优势。为此,提出了一种基于EMD和SSAE的滚动轴承故障诊断方法。首先采用EMD方法分析滚动轴承振动信号,并用得到的IMF构造Hankel矩阵,获得能反映信号特征的奇异值;其次将奇... 深度学习以其强大的特征提取能力展现了它在故障诊断领域的绝对优势。为此,提出了一种基于EMD和SSAE的滚动轴承故障诊断方法。首先采用EMD方法分析滚动轴承振动信号,并用得到的IMF构造Hankel矩阵,获得能反映信号特征的奇异值;其次将奇异值划分为训练集与测试集样本,建立基于SSAE方法的故障诊断模型;最后训练与测试搭建的深度神经网络,得到诊断准确率。所提方法不需要大量的故障诊断先验知识,无需对信号去噪处理,简化了滚动轴承故障诊断的特征提取过程,具有较高的故障诊断准确率。 展开更多
关键词 故障诊断 滚动轴承 经验模态分解 自动编码器 奇异值分解
下载PDF
小波-奇异值分解在异步电机转子故障特征提取中的应用 被引量:34
17
作者 梁霖 徐光华 +1 位作者 刘弹 栗茂林 《中国电机工程学报》 EI CSCD 北大核心 2005年第19期111-115,共5页
针对电流信号中异步电机的转子故障特征分量经常被电源频率分量淹没而无法准确检测的缺点,提出了一种基于小波-奇异值分解的转子故障特征提取方法。通过连续小波变换将电流信号中的各特征频率分量转换到时频分布空间中,对该时频空间进... 针对电流信号中异步电机的转子故障特征分量经常被电源频率分量淹没而无法准确检测的缺点,提出了一种基于小波-奇异值分解的转子故障特征提取方法。通过连续小波变换将电流信号中的各特征频率分量转换到时频分布空间中,对该时频空间进行奇异值分解将各特征频率分量分解到不同的正交特征子空间中,对特征子空间的选择重构可以有效地滤除电源频率分量而提取出转子故障特征分量。模拟数据和实际故障信号的应用表明,该方法提供了一种可实际应用的异步电机转子故障诊断方法。 展开更多
关键词 异步电机 连续小波变换 奇异值分解 转子故障 故障诊断
下载PDF
改进的奇异值分解在轴承故障诊断中的应用 被引量:15
18
作者 王超 孔凡让 +2 位作者 黄伟国 李昌林 陈辉 《振动工程学报》 EI CSCD 北大核心 2014年第2期296-303,共8页
滚动轴承是旋转机械设备的重要部件,对滚动轴承的故障诊断研究具有重要的意义。为了从复杂的轴承振动信号中提取有效的故障信息,提出了改进的奇异值分解故障诊断方法。阐述了奇异值分解与包络谱分析的原理,并对轴承振动信号构造Hankel... 滚动轴承是旋转机械设备的重要部件,对滚动轴承的故障诊断研究具有重要的意义。为了从复杂的轴承振动信号中提取有效的故障信息,提出了改进的奇异值分解故障诊断方法。阐述了奇异值分解与包络谱分析的原理,并对轴承振动信号构造Hankel矩阵进行奇异值分解。利用功率谱密度函数构造滤波器提高信号的信噪比,对滤波器处理后的信号再进行奇异值分解和包络分析,并将此方法应用于滚动轴承振动信号分析。实验结果表明:此方法对振动信号故障特征频率的提取效果具有明显优势。 展开更多
关键词 故障诊断 奇异值分解 包络分析 轴承 滤波器
下载PDF
μ-SVD降噪算法及其在齿轮故障诊断中的应用 被引量:33
19
作者 曾鸣 杨宇 +1 位作者 郑近德 程军圣 《机械工程学报》 EI CAS CSCD 北大核心 2015年第3期95-103,共9页
为了提取机械设备被强背景噪声淹没的故障特征,采用一种具有通用意义的基于奇异值分解(Singular value decomposition,SVD)的子空间降噪算法对信号进行处理,即?-SVD降噪算法。传统的SVD降噪算法是?-SVD降噪算法中拉格朗日乘子??0时的一... 为了提取机械设备被强背景噪声淹没的故障特征,采用一种具有通用意义的基于奇异值分解(Singular value decomposition,SVD)的子空间降噪算法对信号进行处理,即?-SVD降噪算法。传统的SVD降噪算法是?-SVD降噪算法中拉格朗日乘子??0时的一种特殊情况。?-SVD降噪算法包含滤值因子,能够抑制以噪声贡献占主导的奇异值对降噪后信号的信息贡献量。?-SVD降噪算法涉及延迟时间、嵌入维数、降噪阶次、噪声功率和拉格朗日乘子等5个参数。讨论了?-SVD降噪算法的参数选择方法,并着重研究降噪阶次和拉格朗日乘子对降噪效果的影响。齿轮故障仿真信号和齿轮早期裂纹故障振动信号的试验结果表明,?-SVD降噪算法在降噪效果方面要优于传统的SVD降噪算法,可以在强背景噪声情况下更好地提取出齿轮的故障特征。 展开更多
关键词 降噪 μ-奇异值分解 滤值因子 故障诊断 齿轮
下载PDF
基于EMD分解和奇异值差分谱理论的轴承故障诊断方法 被引量:80
20
作者 张超 陈建军 徐亚兰 《振动工程学报》 EI CSCD 北大核心 2011年第5期539-545,共7页
针对故障轴承振动信号中含有强烈的背景噪声,难以提取故障频率的现实情况,提出了基于经验模态分解(Empirical Mode Decomposition,EMD)和奇异值差分谱的轴承故障诊断方法。首先通过EMD方法将非平稳的原始轴承振动信号分解成若干个平稳... 针对故障轴承振动信号中含有强烈的背景噪声,难以提取故障频率的现实情况,提出了基于经验模态分解(Empirical Mode Decomposition,EMD)和奇异值差分谱的轴承故障诊断方法。首先通过EMD方法将非平稳的原始轴承振动信号分解成若干个平稳的本征模函数(Intrinsic Mode Function,IMF);由于背景噪声的影响,从各个IMF的频谱中难以准确地得到故障频率。对IMF分量构建Hankel矩阵并进行奇异值分解,进一步找到奇异值差分谱,根据奇异值差分谱理论对某个IMF分量进行消噪和重构,然后再求其频谱,便能准确地得到故障频率。实验结果表明,提出的方法能有效地应用于轴承的故障诊断。 展开更多
关键词 轴承 故障诊断 经验模态分解 HANKEL矩阵 奇异值差分谱
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部