The Xianshuihe-Anninghe fault extends SE–S and constitutes the southeastern margin of the Tibetan Plateau.However,the Dadu River which is associated with the fault does not flow following the path,but makes a 90º...The Xianshuihe-Anninghe fault extends SE–S and constitutes the southeastern margin of the Tibetan Plateau.However,the Dadu River which is associated with the fault does not flow following the path,but makes a 90ºturn within a distance of 1 km at Shimian,heading east,and joins the Yangtze River,finally flowing into the East China Sea.Adjacent to the abrupt turn,a low and wide pass near the Daqiao reservoir at Mianning separates the N–S course of the Dadu River from the headwater of the Anning River which then flows south into the Yunnan Province along the Anninghe fault.Therefore,many previous studies assumed southward flow of the paleo-Dadu River from the Shimian to the Anning River.However,evidences for the capture of the integrated N–S paleo-Dadu-Anning River,its timing,and causes are still insufficient.This study explored the paleo-drainage pattern of the Dadu and Anning Rivers based on bulk mineral and geochemical analyses of the large quantities of fluvial/lacustrine sediments along the trunk of the Dadu and Anning Rivers.Similar with sands in the modern Dadu River,the Xigeda sediments also exhibit a granitoid affinity with the bulk major mineral compositions of quartz(>50%),anorthite(about 10%),orthoclase(about 5%),muscovite(about 5%),and clinochlore(about 4%).Correspondingly,bulk major elements show high SiO_(2),with all samples>60%,and some of them>70%,low TiO_(2)(≤0.75%),P_(2)O_(5)(≤0.55%),FeO*(≤5%),and relatively high CaO(1.02%–8.51%),Na_(2)O(1.60%–2.52%),and K_(2)O(2.17%–2.71%),with a uniform REE patterns.Therefore,synthesizing all these results indicate that these lacustrine sediments have similar material sources,which are mainly derived from its course in the Songpan-Ganzi flysch block,implying that the paleo-Dadu originally flowed southward into the Anning River and provided materials to the Xigeda ancient lake.The rearrangement of the paleo-Dadu River appears to be closely related to the locally focused uplift driven by strong activities of the XianshuiheXiaojiang fault system.展开更多
The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical mode...The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical model for flood routing in the river network Of the Jingjiang River and Dongting Lake using the explicit finite volume method. Based on observed data during the flood periods in 1996 and 1998, the model was calibrated and validated, and the results show that the model is effective and has high accuracy. In addition, the one-dimensional mathematical model for the river network and the horizontal two-dimensional (2-D) mathematical model for the Jingjiang flood diversion area were coupled to simulate the flood process in the Jingjiang River, Dongting Lake, and the Jingjiang flood diversion area. The calculated results of the coupled model are consistent with the practical processes. Meanwhile, the results show that the flood diversion has significant effects on the decrease of the peak water level at the Shashi and Chenjiawan hydrological stations near the flood diversion gates, and the effect is more obvious in the downstream than in the upstream.展开更多
This article is concerned with assessment of changes in two critical characteristics of lake and river ice regime, namely ice cover duration and maximum ice thickness, in the period from the beginning of the 80s to th...This article is concerned with assessment of changes in two critical characteristics of lake and river ice regime, namely ice cover duration and maximum ice thickness, in the period from the beginning of the 80s to the present, which is characterized by higher temperatures in the Northern Hemisphere compared with the previous period. The above ice regime characteristics are often limiting factors in winter operation of lakes and rivers (navigation, hydraulic construction works in cold period, construction of ice roads etc.). Assessment of changes in ice characteristics of lakes and rivers has been made for 52 river and five lake gauging sites of the Asian part of Russia (APR) using long-term observation data from the Russian observing network. Long-term series of the above characteristics were divided into two periods: from 1955 to 1979 (the period of stationary climate) and from 1980 to 2014 (non-stationary climate) and assessed from the point of view of their homogeneity and trend significance by Student’s t-test. The research has found that at most of the sites in the APR, both ice cover duration and maximum ice thickness decreased during non-stationary climate period compared with the previous one. The greatest quantitative changes have occurred in the Eastern Siberia (average net decrease in ice cover duration amounted to 7 days.decade-1 and in maximum ice thickness-20 cm.decade-1) and in the Amur River basin (7 days.decade-1 and 17 cm.decade-1 respectively).展开更多
With China's economic development and population growth,China's ecological environment continues to deteriorate.The comprehensive ecosystem restoration of the Shichuan River aims to build an ecosystem containi...With China's economic development and population growth,China's ecological environment continues to deteriorate.The comprehensive ecosystem restoration of the Shichuan River aims to build an ecosystem containing"mountains,rivers,forests,farmland,lakes and grass"by determining scientific and reasonable thickness of foreign soil,pollution restoration,ecological reconstruction,safeguard measures,etc.It brings new vitality to local ecological environment remodeling and economic development.展开更多
Groundwater movement beneath watershed divide is one component of the hydrological cycle that is typically ignored due to difficulty in analysis. Numerical ground-water models, like TAGSAC, have been used extensively ...Groundwater movement beneath watershed divide is one component of the hydrological cycle that is typically ignored due to difficulty in analysis. Numerical ground-water models, like TAGSAC, have been used extensively for predicting aquifer responses to external stresses. In this paper TAGSAC code was developed to identify the inter-basin groundwater transfer (IBGWT) between upper Awash River basin (UARB) and upper rift valley lakes basin (URVLB) of Ethiopia. For the identification three steady state groundwater models (for UARB, URVLB and for the two combined basins) were first created and calibrated for the 926 inventoried wells. The first two models are conceptualized by considering the watershed divide between the two basins as no-flow. The third model avoids the surface water divide which justifies IBGWT. The calibration of these three models was made by changing the recharge and hydrogeologic parameters of the basins. The goodness of fit indicators (GoFIs) obtained was better for the combined model than the model that describes the URVLB. Furthermore, the hydraulic head distribution obtained from the combined model clearly indicates that there is a groundwater flow that doesn’t respect the surface water divide. The most obvious effect of IBGWT observed in these two basins is that it diminishes surface water discharge from URVLB, and enhances discharge in the UARB. Moreover, the result of this study indicates potential for internal and cross contamination of the two adjacent groundwater.展开更多
Based on 2022 and 2023 hydrometric data and satellite images (Sentinel 2022, SPOT 2010), this study aims to present the Nokoué Lake and its channels’ re-cent hydromorphological characteristics. Integrating flow,...Based on 2022 and 2023 hydrometric data and satellite images (Sentinel 2022, SPOT 2010), this study aims to present the Nokoué Lake and its channels’ re-cent hydromorphological characteristics. Integrating flow, tributary morphology, and topography data determined specific power values along the axes studied. The values obtained range from 2.69 to 12.92 W/m2 for Ouémé River and 2.46 to 10.99 W/m2 for Sô River. The resulting water erosion on banks and bottoms is of linear, areolar, or gully and claw types. Lake bathymetry varies from -0.5 to -2.6 m (low flow period) and -1 to -4 m;in the Ouémé, Sô, and Totchè rivers, it varies from -5 m to -7 m, reaching -10 m at the Cotonou channel entrance (flood period). Bathymetric profiles reveal varied “U”, “V” and “Intermediate” bottom morphologies, influenced by erosion/sedimentation processes and human activities. The flow facies identified are lentic in the northern tributaries and lotic in the Cotonou and Totchè canals. Spatial analysis identified nine (09) thematic classes. In 2022, the surface area of the water body has increased from 274 km2 at low water to 280 km2 at high water, whereas in 2010 (a recent year of exceptional flooding), the surface area was 270 km2 at low water and 277 km2 at high water. Significant changes in land use are observed between 2010 and 2022. The floodplain area decreased slightly, from 421 km2 in 2010 (year of exceptional flooding) to 419 km2 in 2022. The evolution of land use shows a progressive expansion of the urban environment to the detriment of the natural environment. In the medium to long term, this trend could threaten the hydromorphological balance and even the existence of this important lagoon ecosystem.展开更多
Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers for...Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691±305 kaBP middle Pleistocene ice age, 75-40 kaBP the early stage of last glacier, 27-8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn't erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn't form stable lake.展开更多
Thirteen sediment core samples(0-10 cm) were taken from the seven lakes in the middle and lower reaches of the Yangtze River to determine the contents and distributions of organic phosphorus(P) fractions in the sedime...Thirteen sediment core samples(0-10 cm) were taken from the seven lakes in the middle and lower reaches of the Yangtze River to determine the contents and distributions of organic phosphorus(P) fractions in the sediments of the shallow lakes in the area.The organic P fractions in the sediments were in the order of moderately labile organic P(MLOP) > moderately resistant organic P(MROP) > highly resistant organic P(HROP) > labile organic P(LOP),with average proportional ratios of 13.2:2.8:1.3:1.0.LOP,MLOP,and MROP were significantly related to the contents of total organic carbon(TOC),water-soluble P(WSP),algal-available P(AAP),NaHCO3-extractable P(Olsen-P),total P(TP),organic P(OP),and inorganic P(IP).However,HROP was significantly related to OP and weakly correlated with TOC,WSP,AAP,Olsen-P,TP or IP.This suggested that organic P,especially LOP and MLOP in sediments,deserved even greater attention than IP in regards to lake eutrophication.In terms of organic P,sediments were more hazardous than soils in lake eutrophication.Although OP concentrations were higher in moderately polluted sediment than those in heavily polluted sediment,LOP and MLOP were higher in the heavily polluted sediment,which indicated that heavily polluted sediment was more hazardous than moderately polluted sediment in lake eutrophication.展开更多
Dongping Lake area,located in the lower reaches of Yellow River,is an ideal place to study the changes of modern river and lake sedimentary environment.The sediment samples of Dawen River,Yellow River,and Dongping Lak...Dongping Lake area,located in the lower reaches of Yellow River,is an ideal place to study the changes of modern river and lake sedimentary environment.The sediment samples of Dawen River,Yellow River,and Dongping Lake were collected,and the major elements,trace elements and organic matter geochemical composition of the samples were analyzed.Cluster analysis,characteristic element ratio method and graphic method were used to explore the geochemical characteristics of sediments and their environmental implication.The results show that the contents of SiO_(2),Na_(2)O,TiO_(2) and Zr in sediments of Dawen River and Yellow River are relatively high,and the contents of iron and manganese oxides,organic matter,CaO,P2O5 and Sr in lake sediments are relatively high.That reveals the differences of sedimentary environments between the rivers and the lake.The contents of Sr and Zr in Dawen River are affected by the rapid migration of clastic materials in the upstream carbonate source area during the flood season;the δCe,ΣREE and REE’s ratios in the sediments of the Yellow River reflect the influence of the Loess source;and the distribution of elements changes along the flow direction during the flood season.The characteristics of pH,element composition and LREE&HREE fractionation of the lake sediments indicate that the sediment source is complex,and the lake environment is affected by the flood season.The study shows that the geochemical content and its variation characteristics of sediments effectively reveal the sedimentary environment,material composition and characteristics of flood season of rivers and the lake in the study area.展开更多
Through high-resolution research of sedimental chronology and the sediment environmental indexes, such as graininess, minerals, magnetic parameters, pigment content, organic carbon and chronology in Ds-co...Through high-resolution research of sedimental chronology and the sediment environmental indexes, such as graininess, minerals, magnetic parameters, pigment content, organic carbon and chronology in Ds-core and Ws-core in Nansihu Lake, the authors analyze the formation cause of the Nansihu Lake and its water environmental changes. Historical documents are also analyzed here in order to reach the conclusion. Researches indicate that the Nansihu Lake came into being about 2500 aBP and its evolution succession can be divided into four stages. In this evolution process, several scattered lakes merge into one large lake in the east of China. This process is distinctively affected by the overflow of the Yellow River, the excavation of the Grand Canal and other human activities.展开更多
The Shiwulihe River, the inflow river of Chaohu Lake in Hefei City, was taken as an example. Based on the current status of water quali- ty and analysis of pollution sources in the Shiwulihe River, countermeasures and...The Shiwulihe River, the inflow river of Chaohu Lake in Hefei City, was taken as an example. Based on the current status of water quali- ty and analysis of pollution sources in the Shiwulihe River, countermeasures and suggestions of controlling water pollution were proposed to provide effective ways for the control of water pollution and restoration of aquatic ecosystem in the Shiwulihe River and other similar rivers flowing into lakes.展开更多
In 1999, Diexi paleo-dammed lake(2349 m a.s.l.) was discovered around Diexi town along the Minjiang River in Sichuan province. Diexi is located where the eastern edge of the Tibetan Plateau and the Sichuan Basin meet....In 1999, Diexi paleo-dammed lake(2349 m a.s.l.) was discovered around Diexi town along the Minjiang River in Sichuan province. Diexi is located where the eastern edge of the Tibetan Plateau and the Sichuan Basin meet. The dammed lake was formed during the Last Glacial Maximum of the Late Pleistocene(~30,000 years ago) and began to empty about 15,000 years ago. The lacustrine sediments(up to 240 m thick) preserve abundant paleoenvironment information. In this paper, a mass of oxygen isotopes and 14 C dating from drilled cores are analyzed and discussed. The δ18 O curve on the paleo climate from this section is comparable with the coeval paleo climatic curves of ice cores and karsts in China and others. Furthermore, the physical model testing has confirmed that the disturbed zones in the core are caused by strong earthquakes occurred at least 10 times, which implies strong crustal deformation, as an important driving force, affecting climate change. This study provides a new window to observe East Asian monsoon formation, paleoenvironmental evolution and the global climate change.展开更多
The Lake Tian E Zhou(TEZ,an oxbow lake)was formed during the rerouting of the Changjiang River in 1972,with strong influences from the main river channel and flood events.Herein,a sediment core was collected from the ...The Lake Tian E Zhou(TEZ,an oxbow lake)was formed during the rerouting of the Changjiang River in 1972,with strong influences from the main river channel and flood events.Herein,a sediment core was collected from the Lake TEZ for the measurements of carbon isotopes and biomarkers,including stable carbon isotopes(δ13C),radiocarbon composition(?14C),and lignin phenols,as well as lead-210 to reconstruct recent heavy flood events over the past 70 years.At the 24–26 cm interval,the sediment contained the highest OC%,TN%,and lignin phenols content,as well as significantly depleted 13C but enriched 14C,corresponding to the extreme flood event in 1998.In addition,statistics from t-test showed that lignin phenols normalized to OC(Λ8),the concentration of 3,5-dihydroxy benzoic acid(3,5-BD),and the ratio of p-hydroxy benzophenone to total hydroxyl phenols(PHB/HP)were all significantly different between the layers containing flood deposits and the layers deposited under normal non-flood conditions(p<0.05).These results indicate that the later three parameters are highly related to flood events and can be used as compelling proxies,along with sediment chronology,for hydrological changes and storm/flood events in the river basin and coastal marine environments.展开更多
In this paper,15 rivers and 10 lake reservoirs in the Liaohe River basin were taken as research objects. Based on six indexes: satisfaction situation of ecological water demand,standard-reaching rate of water quality ...In this paper,15 rivers and 10 lake reservoirs in the Liaohe River basin were taken as research objects. Based on six indexes: satisfaction situation of ecological water demand,standard-reaching rate of water quality in water function area,eutrophication index of lakes and reservoirs,longitudinal connectivity of rivers,reserve rate of important wetlands and status of important aquatic habitat,water ecological conditions of main rivers and lakes in the basin were evaluated. The results showed that the rivers with better ecology were mainly distributed in east mountainous area of Liaoning,such as the upper reaches of the Hunhe River and the Taizi River;the problems of water pollution,ecological water shortage and habitat shrinkage were widespread in the Liaohe River basin,and the situation of water ecological security in the Liaohe River basin still faced great pressure.展开更多
Based on geographical and hydrological characteristics of lakes in the middle and lower reaches of Yangtze River, this paper analyzes the factors restricting the sustainable utilization of lake resources, including th...Based on geographical and hydrological characteristics of lakes in the middle and lower reaches of Yangtze River, this paper analyzes the factors restricting the sustainable utilization of lake resources, including the conflict among agriculture water conservancy, and fishery, lake water pollution and eutrophication, lake siltation and swamping. The countermeasures and suggestions, such as improving the strategic status of lake harnessing, strengthening integrated management of lakes and their watershed, strengthening researches on lake environment and lake resources, are proposed to practice the sustainable utilization of lake resources.展开更多
Under increasing anthropogenic pressure,species with a previously contiguous distribution across their ranges have been reduced to small fragmented populations.The critically endangered Yangtze finless porpoise(Neopho...Under increasing anthropogenic pressure,species with a previously contiguous distribution across their ranges have been reduced to small fragmented populations.The critically endangered Yangtze finless porpoise(Neophocaena asiaeorientalis asiaeorientalis),once commonly observed in the Yangtze River-Poyang Lake junction,is now rarely seen in the river-lake corridor.In this study,static passive acoustic monitoring techniques were used to detect the biosonar activities of the Yangtze finless porpoise in this unique corridor.Generalized linear models were used to examine the correlation between these activities and anthropogenic impacts from the COVID-19 pandemic lockdown and boat navigation,as well as environmental variables,including hydrological conditions and light levels.Over approximately three consecutive years of monitoring(2020–2022),porpoise biosonar was detected during 93%of logged days,indicating the key role of the corridor for finless porpoise conservation.In addition,porpoise clicks were recorded in 3.80%of minutes,while feeding correlated buzzes were detected in 1.23%of minutes,suggesting the potential existence of localized,small-scale migration.Furthermore,both anthropogenic and environmental variables were significantly correlated with the diel,lunar,monthly,seasonal,and annual variations in porpoise biosonar activities.During the pandemic lockdown period,porpoise sonar detection showed a significant increase.Furthermore,a significant negative correlation was identified between the detection of porpoise click trains and buzzes and boat traffic intensity.In addition to water level and flux,daylight and moonlight exhibited significant correlations with porpoise biosonar activities,with markedly higher detections at night and quarter moon periods.Ensuring the spatiotemporal reduction of anthropogenic activities,implementing vessel speed restrictions(e.g.,during porpoise migration and feeding),and maintaining local natural hydrological regimes are critical factors for sustaining porpoise population viability.展开更多
To understand the potential impact of the Three Gorges Reservoir on the aquatic ecosystem after the damming of the Yangtze River,we studied the community composition and temporal abundance distribution of algae in two...To understand the potential impact of the Three Gorges Reservoir on the aquatic ecosystem after the damming of the Yangtze River,we studied the community composition and temporal abundance distribution of algae in two types of water bodies:a segment of the Jialing River near its confluence with the Yangtze River as an example of the river-lake type,and Shuanglong Lake in Chongqing as an example of the lake type.In total,107 species belonging to 58 genera of 7 phyla were identified in the study area of the Jialing River,dominated by three groups with 49.5% diatoms,29.0% chlorophytes,and 11.4% cyanobacteria in the community composition.There were 122 species belonging to 66 genera of 8 phyla in Shuanglong Lake,dominated by the same three groups with 19.7% diatoms,48.4% chlorophytes,and 22.2% cyanobacteria.The densities of total algae and individual dominant groups were all much higher in the lake.More species of diatoms were found in the river-lake segment;whereas more chlorophyte species and cyanobacteriaum species were in the lake.There were 17 dominant species including 8 diatoms,4 chlorophytes,3 cyanobacteria and 2 cryptophytes in the river-lake segment,and 21 species in the lake,including 2 diatoms,9 chlorophytes,6 cyanobacteria,3 cryptophytes and a dinoflagellate.In eutrophic conditions,chlorophytes and cyanobacteria may proliferate in a lake-type area and diatoms may cause algal bloom in a relatively faster-flow lake-river type area.展开更多
The vertical profile distribution characteristics of nitrogen in core sediments of Three Rivers Estuary in Poyang Lake were studied.The results showed that TN content in core sediments ranged from 480.0 to 1 900.0 μg...The vertical profile distribution characteristics of nitrogen in core sediments of Three Rivers Estuary in Poyang Lake were studied.The results showed that TN content in core sediments ranged from 480.0 to 1 900.0 μg/g with the change of depth,which was divided into three distribution types as follows:TN content decreases gradually with the increase of depth,TN content increases gradually with the increase of depth or higher content in the middle but lower content in two ends.NH4+-N content ranged from 8.7 ...展开更多
The lake-breeze at Taihu Lake generates a different specific heat capacity between the water body and the surrounding land. Taihu Lake has a significant impact on the atmospheric conditions and the air quality in the ...The lake-breeze at Taihu Lake generates a different specific heat capacity between the water body and the surrounding land. Taihu Lake has a significant impact on the atmospheric conditions and the air quality in the Yangtze River Delta. This phenomenon is referred to as the Taihu Lake effect. In this study, two simulations were conducted to determine the impact of the Taihu Lake effect in the reference experiment (R-E) and sensitivity experiments (NO_TH). The control simulations demonstrated that the meteorological field and the spatial distribution of ozone (03) concentrations over Taihu lake obviously changed once the land-use type of water body was substituted by cropland. The surface temperature of Taihu Lake was reduced under the impact of Taihu Lake, and a huge temperature difference caused a strong lake-breeze effect. The results also showed that the difference in the average concentrations of 03 between the R-E and NO_TH experiments reached 12 ppbv in most areas of Taihu Lake, all day, on 20 May 2014. During daytime (0800-1600 LST, LST=UTC+8), the influence of the Taihu Lake effect on 03 in the Suzhou region was not significant. However, the influence of the Taihu Lake effect on 03 in the Suzhou region was obvious during nighttime (1800-2400 LST). The larger changes in the physical and chemical processes were horizontal and vertical advections under the influence of the Taihu Lake effect in Taihu Lake.展开更多
The 14 stable rare earth element(REE) concentrations and distribution patterns were investigated for surface waters(n=51),soils(n=52) and sediments(n=42) from the tropical Terengganu River basin,Malaysia.The chondrite...The 14 stable rare earth element(REE) concentrations and distribution patterns were investigated for surface waters(n=51),soils(n=52) and sediments(n=42) from the tropical Terengganu River basin,Malaysia.The chondrite normalized REE patterns of soils developed on four geological units showed enrichment of LREE,a pronounced negative Eu,and depletion of HREE with an enrichment order granite>>metasedimentary>alluvium>volcanic.The REE patterns in sediments reflected the soil REE patterns with an ove...展开更多
基金financially supported by the Natural Science Foundation of China(41941016,42072240,41830217)Ministry of Science and Technology of China(2019QZKK0901,2021FY100101)+2 种基金Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory(GML2019ZD0201)China Geological Survey(DD20221630)Special Fund of the Institute of Geophysics,China Earthquake Administration(DQJB20B21).
文摘The Xianshuihe-Anninghe fault extends SE–S and constitutes the southeastern margin of the Tibetan Plateau.However,the Dadu River which is associated with the fault does not flow following the path,but makes a 90ºturn within a distance of 1 km at Shimian,heading east,and joins the Yangtze River,finally flowing into the East China Sea.Adjacent to the abrupt turn,a low and wide pass near the Daqiao reservoir at Mianning separates the N–S course of the Dadu River from the headwater of the Anning River which then flows south into the Yunnan Province along the Anninghe fault.Therefore,many previous studies assumed southward flow of the paleo-Dadu River from the Shimian to the Anning River.However,evidences for the capture of the integrated N–S paleo-Dadu-Anning River,its timing,and causes are still insufficient.This study explored the paleo-drainage pattern of the Dadu and Anning Rivers based on bulk mineral and geochemical analyses of the large quantities of fluvial/lacustrine sediments along the trunk of the Dadu and Anning Rivers.Similar with sands in the modern Dadu River,the Xigeda sediments also exhibit a granitoid affinity with the bulk major mineral compositions of quartz(>50%),anorthite(about 10%),orthoclase(about 5%),muscovite(about 5%),and clinochlore(about 4%).Correspondingly,bulk major elements show high SiO_(2),with all samples>60%,and some of them>70%,low TiO_(2)(≤0.75%),P_(2)O_(5)(≤0.55%),FeO*(≤5%),and relatively high CaO(1.02%–8.51%),Na_(2)O(1.60%–2.52%),and K_(2)O(2.17%–2.71%),with a uniform REE patterns.Therefore,synthesizing all these results indicate that these lacustrine sediments have similar material sources,which are mainly derived from its course in the Songpan-Ganzi flysch block,implying that the paleo-Dadu originally flowed southward into the Anning River and provided materials to the Xigeda ancient lake.The rearrangement of the paleo-Dadu River appears to be closely related to the locally focused uplift driven by strong activities of the XianshuiheXiaojiang fault system.
基金supported by the National Key Technologies Research and Development Program (Grant No. 2006BAB05B02)
文摘The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical model for flood routing in the river network Of the Jingjiang River and Dongting Lake using the explicit finite volume method. Based on observed data during the flood periods in 1996 and 1998, the model was calibrated and validated, and the results show that the model is effective and has high accuracy. In addition, the one-dimensional mathematical model for the river network and the horizontal two-dimensional (2-D) mathematical model for the Jingjiang flood diversion area were coupled to simulate the flood process in the Jingjiang River, Dongting Lake, and the Jingjiang flood diversion area. The calculated results of the coupled model are consistent with the practical processes. Meanwhile, the results show that the flood diversion has significant effects on the decrease of the peak water level at the Shashi and Chenjiawan hydrological stations near the flood diversion gates, and the effect is more obvious in the downstream than in the upstream.
文摘This article is concerned with assessment of changes in two critical characteristics of lake and river ice regime, namely ice cover duration and maximum ice thickness, in the period from the beginning of the 80s to the present, which is characterized by higher temperatures in the Northern Hemisphere compared with the previous period. The above ice regime characteristics are often limiting factors in winter operation of lakes and rivers (navigation, hydraulic construction works in cold period, construction of ice roads etc.). Assessment of changes in ice characteristics of lakes and rivers has been made for 52 river and five lake gauging sites of the Asian part of Russia (APR) using long-term observation data from the Russian observing network. Long-term series of the above characteristics were divided into two periods: from 1955 to 1979 (the period of stationary climate) and from 1980 to 2014 (non-stationary climate) and assessed from the point of view of their homogeneity and trend significance by Student’s t-test. The research has found that at most of the sites in the APR, both ice cover duration and maximum ice thickness decreased during non-stationary climate period compared with the previous one. The greatest quantitative changes have occurred in the Eastern Siberia (average net decrease in ice cover duration amounted to 7 days.decade-1 and in maximum ice thickness-20 cm.decade-1) and in the Amur River basin (7 days.decade-1 and 17 cm.decade-1 respectively).
文摘With China's economic development and population growth,China's ecological environment continues to deteriorate.The comprehensive ecosystem restoration of the Shichuan River aims to build an ecosystem containing"mountains,rivers,forests,farmland,lakes and grass"by determining scientific and reasonable thickness of foreign soil,pollution restoration,ecological reconstruction,safeguard measures,etc.It brings new vitality to local ecological environment remodeling and economic development.
文摘Groundwater movement beneath watershed divide is one component of the hydrological cycle that is typically ignored due to difficulty in analysis. Numerical ground-water models, like TAGSAC, have been used extensively for predicting aquifer responses to external stresses. In this paper TAGSAC code was developed to identify the inter-basin groundwater transfer (IBGWT) between upper Awash River basin (UARB) and upper rift valley lakes basin (URVLB) of Ethiopia. For the identification three steady state groundwater models (for UARB, URVLB and for the two combined basins) were first created and calibrated for the 926 inventoried wells. The first two models are conceptualized by considering the watershed divide between the two basins as no-flow. The third model avoids the surface water divide which justifies IBGWT. The calibration of these three models was made by changing the recharge and hydrogeologic parameters of the basins. The goodness of fit indicators (GoFIs) obtained was better for the combined model than the model that describes the URVLB. Furthermore, the hydraulic head distribution obtained from the combined model clearly indicates that there is a groundwater flow that doesn’t respect the surface water divide. The most obvious effect of IBGWT observed in these two basins is that it diminishes surface water discharge from URVLB, and enhances discharge in the UARB. Moreover, the result of this study indicates potential for internal and cross contamination of the two adjacent groundwater.
文摘Based on 2022 and 2023 hydrometric data and satellite images (Sentinel 2022, SPOT 2010), this study aims to present the Nokoué Lake and its channels’ re-cent hydromorphological characteristics. Integrating flow, tributary morphology, and topography data determined specific power values along the axes studied. The values obtained range from 2.69 to 12.92 W/m2 for Ouémé River and 2.46 to 10.99 W/m2 for Sô River. The resulting water erosion on banks and bottoms is of linear, areolar, or gully and claw types. Lake bathymetry varies from -0.5 to -2.6 m (low flow period) and -1 to -4 m;in the Ouémé, Sô, and Totchè rivers, it varies from -5 m to -7 m, reaching -10 m at the Cotonou channel entrance (flood period). Bathymetric profiles reveal varied “U”, “V” and “Intermediate” bottom morphologies, influenced by erosion/sedimentation processes and human activities. The flow facies identified are lentic in the northern tributaries and lotic in the Cotonou and Totchè canals. Spatial analysis identified nine (09) thematic classes. In 2022, the surface area of the water body has increased from 274 km2 at low water to 280 km2 at high water, whereas in 2010 (a recent year of exceptional flooding), the surface area was 270 km2 at low water and 277 km2 at high water. Significant changes in land use are observed between 2010 and 2022. The floodplain area decreased slightly, from 421 km2 in 2010 (year of exceptional flooding) to 419 km2 in 2022. The evolution of land use shows a progressive expansion of the urban environment to the detriment of the natural environment. In the medium to long term, this trend could threaten the hydromorphological balance and even the existence of this important lagoon ecosystem.
基金supported by Project No.1212011120185 sponsored by China Geological Survey
文摘Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691±305 kaBP middle Pleistocene ice age, 75-40 kaBP the early stage of last glacier, 27-8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn't erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn't form stable lake.
基金the China’s National Basic Research Program:"Studies on the Process of Eutrophication of Lakesand the Mechanism of the Blooming of Blue Green Alga" (No2002CB412304)
文摘Thirteen sediment core samples(0-10 cm) were taken from the seven lakes in the middle and lower reaches of the Yangtze River to determine the contents and distributions of organic phosphorus(P) fractions in the sediments of the shallow lakes in the area.The organic P fractions in the sediments were in the order of moderately labile organic P(MLOP) > moderately resistant organic P(MROP) > highly resistant organic P(HROP) > labile organic P(LOP),with average proportional ratios of 13.2:2.8:1.3:1.0.LOP,MLOP,and MROP were significantly related to the contents of total organic carbon(TOC),water-soluble P(WSP),algal-available P(AAP),NaHCO3-extractable P(Olsen-P),total P(TP),organic P(OP),and inorganic P(IP).However,HROP was significantly related to OP and weakly correlated with TOC,WSP,AAP,Olsen-P,TP or IP.This suggested that organic P,especially LOP and MLOP in sediments,deserved even greater attention than IP in regards to lake eutrophication.In terms of organic P,sediments were more hazardous than soils in lake eutrophication.Although OP concentrations were higher in moderately polluted sediment than those in heavily polluted sediment,LOP and MLOP were higher in the heavily polluted sediment,which indicated that heavily polluted sediment was more hazardous than moderately polluted sediment in lake eutrophication.
基金This study was supported by Opening Fund of Provincial Key Lab of Applied Nuclear Techniques in Geosciences(No.201904)Key Scientific and Technological Project(No.KY201957)of Shandong Bureau of Geology and Mineral Resources.
文摘Dongping Lake area,located in the lower reaches of Yellow River,is an ideal place to study the changes of modern river and lake sedimentary environment.The sediment samples of Dawen River,Yellow River,and Dongping Lake were collected,and the major elements,trace elements and organic matter geochemical composition of the samples were analyzed.Cluster analysis,characteristic element ratio method and graphic method were used to explore the geochemical characteristics of sediments and their environmental implication.The results show that the contents of SiO_(2),Na_(2)O,TiO_(2) and Zr in sediments of Dawen River and Yellow River are relatively high,and the contents of iron and manganese oxides,organic matter,CaO,P2O5 and Sr in lake sediments are relatively high.That reveals the differences of sedimentary environments between the rivers and the lake.The contents of Sr and Zr in Dawen River are affected by the rapid migration of clastic materials in the upstream carbonate source area during the flood season;the δCe,ΣREE and REE’s ratios in the sediments of the Yellow River reflect the influence of the Loess source;and the distribution of elements changes along the flow direction during the flood season.The characteristics of pH,element composition and LREE&HREE fractionation of the lake sediments indicate that the sediment source is complex,and the lake environment is affected by the flood season.The study shows that the geochemical content and its variation characteristics of sediments effectively reveal the sedimentary environment,material composition and characteristics of flood season of rivers and the lake in the study area.
基金Natural Science Foundation of Shandong Province No.Z2000E01
文摘Through high-resolution research of sedimental chronology and the sediment environmental indexes, such as graininess, minerals, magnetic parameters, pigment content, organic carbon and chronology in Ds-core and Ws-core in Nansihu Lake, the authors analyze the formation cause of the Nansihu Lake and its water environmental changes. Historical documents are also analyzed here in order to reach the conclusion. Researches indicate that the Nansihu Lake came into being about 2500 aBP and its evolution succession can be divided into four stages. In this evolution process, several scattered lakes merge into one large lake in the east of China. This process is distinctively affected by the overflow of the Yellow River, the excavation of the Grand Canal and other human activities.
基金Supported by the National Science and Technology Project of Water Pollution Control and Management(2012ZX07103-004,2012ZX07103003-03)
文摘The Shiwulihe River, the inflow river of Chaohu Lake in Hefei City, was taken as an example. Based on the current status of water quali- ty and analysis of pollution sources in the Shiwulihe River, countermeasures and suggestions of controlling water pollution were proposed to provide effective ways for the control of water pollution and restoration of aquatic ecosystem in the Shiwulihe River and other similar rivers flowing into lakes.
基金financially supported by the China National Nature Science Foundation(No.41072230,No.41572308,No.41977226)the State Key Laboratory of Geo-hazard Prevention&Geo-environment Protection(No.SKLGP2012Z008,No.SKLGP2016Z015)
文摘In 1999, Diexi paleo-dammed lake(2349 m a.s.l.) was discovered around Diexi town along the Minjiang River in Sichuan province. Diexi is located where the eastern edge of the Tibetan Plateau and the Sichuan Basin meet. The dammed lake was formed during the Last Glacial Maximum of the Late Pleistocene(~30,000 years ago) and began to empty about 15,000 years ago. The lacustrine sediments(up to 240 m thick) preserve abundant paleoenvironment information. In this paper, a mass of oxygen isotopes and 14 C dating from drilled cores are analyzed and discussed. The δ18 O curve on the paleo climate from this section is comparable with the coeval paleo climatic curves of ice cores and karsts in China and others. Furthermore, the physical model testing has confirmed that the disturbed zones in the core are caused by strong earthquakes occurred at least 10 times, which implies strong crustal deformation, as an important driving force, affecting climate change. This study provides a new window to observe East Asian monsoon formation, paleoenvironmental evolution and the global climate change.
基金The National Natural Science Foundation of China under contract Nos 41021064,41276081 and 41606211the 111 Project under contract No.B08022the Scientific Research Fund of Second Institute of Oceanography,MNR under contract No.JG1806
文摘The Lake Tian E Zhou(TEZ,an oxbow lake)was formed during the rerouting of the Changjiang River in 1972,with strong influences from the main river channel and flood events.Herein,a sediment core was collected from the Lake TEZ for the measurements of carbon isotopes and biomarkers,including stable carbon isotopes(δ13C),radiocarbon composition(?14C),and lignin phenols,as well as lead-210 to reconstruct recent heavy flood events over the past 70 years.At the 24–26 cm interval,the sediment contained the highest OC%,TN%,and lignin phenols content,as well as significantly depleted 13C but enriched 14C,corresponding to the extreme flood event in 1998.In addition,statistics from t-test showed that lignin phenols normalized to OC(Λ8),the concentration of 3,5-dihydroxy benzoic acid(3,5-BD),and the ratio of p-hydroxy benzophenone to total hydroxyl phenols(PHB/HP)were all significantly different between the layers containing flood deposits and the layers deposited under normal non-flood conditions(p<0.05).These results indicate that the later three parameters are highly related to flood events and can be used as compelling proxies,along with sediment chronology,for hydrological changes and storm/flood events in the river basin and coastal marine environments.
基金Supported by the National Water Resources Protection Plan of the Ministry of Water Resources。
文摘In this paper,15 rivers and 10 lake reservoirs in the Liaohe River basin were taken as research objects. Based on six indexes: satisfaction situation of ecological water demand,standard-reaching rate of water quality in water function area,eutrophication index of lakes and reservoirs,longitudinal connectivity of rivers,reserve rate of important wetlands and status of important aquatic habitat,water ecological conditions of main rivers and lakes in the basin were evaluated. The results showed that the rivers with better ecology were mainly distributed in east mountainous area of Liaoning,such as the upper reaches of the Hunhe River and the Taizi River;the problems of water pollution,ecological water shortage and habitat shrinkage were widespread in the Liaohe River basin,and the situation of water ecological security in the Liaohe River basin still faced great pressure.
文摘Based on geographical and hydrological characteristics of lakes in the middle and lower reaches of Yangtze River, this paper analyzes the factors restricting the sustainable utilization of lake resources, including the conflict among agriculture water conservancy, and fishery, lake water pollution and eutrophication, lake siltation and swamping. The countermeasures and suggestions, such as improving the strategic status of lake harnessing, strengthening integrated management of lakes and their watershed, strengthening researches on lake environment and lake resources, are proposed to practice the sustainable utilization of lake resources.
基金supported by Science and Technology Service Network Initiative Program of the Chinese Academy of Sciencesthe National Natural Science Foundation of China (41806197)the Exploratory Program of the Natural Science Foundation of Zhejiang Province (ZX2023000154)。
文摘Under increasing anthropogenic pressure,species with a previously contiguous distribution across their ranges have been reduced to small fragmented populations.The critically endangered Yangtze finless porpoise(Neophocaena asiaeorientalis asiaeorientalis),once commonly observed in the Yangtze River-Poyang Lake junction,is now rarely seen in the river-lake corridor.In this study,static passive acoustic monitoring techniques were used to detect the biosonar activities of the Yangtze finless porpoise in this unique corridor.Generalized linear models were used to examine the correlation between these activities and anthropogenic impacts from the COVID-19 pandemic lockdown and boat navigation,as well as environmental variables,including hydrological conditions and light levels.Over approximately three consecutive years of monitoring(2020–2022),porpoise biosonar was detected during 93%of logged days,indicating the key role of the corridor for finless porpoise conservation.In addition,porpoise clicks were recorded in 3.80%of minutes,while feeding correlated buzzes were detected in 1.23%of minutes,suggesting the potential existence of localized,small-scale migration.Furthermore,both anthropogenic and environmental variables were significantly correlated with the diel,lunar,monthly,seasonal,and annual variations in porpoise biosonar activities.During the pandemic lockdown period,porpoise sonar detection showed a significant increase.Furthermore,a significant negative correlation was identified between the detection of porpoise click trains and buzzes and boat traffic intensity.In addition to water level and flux,daylight and moonlight exhibited significant correlations with porpoise biosonar activities,with markedly higher detections at night and quarter moon periods.Ensuring the spatiotemporal reduction of anthropogenic activities,implementing vessel speed restrictions(e.g.,during porpoise migration and feeding),and maintaining local natural hydrological regimes are critical factors for sustaining porpoise population viability.
基金Funded by the Natural Science Foundation of China (No.50178070)the Natural Science Foundation of Chongqing (Nos. 8091 and 7136)
文摘To understand the potential impact of the Three Gorges Reservoir on the aquatic ecosystem after the damming of the Yangtze River,we studied the community composition and temporal abundance distribution of algae in two types of water bodies:a segment of the Jialing River near its confluence with the Yangtze River as an example of the river-lake type,and Shuanglong Lake in Chongqing as an example of the lake type.In total,107 species belonging to 58 genera of 7 phyla were identified in the study area of the Jialing River,dominated by three groups with 49.5% diatoms,29.0% chlorophytes,and 11.4% cyanobacteria in the community composition.There were 122 species belonging to 66 genera of 8 phyla in Shuanglong Lake,dominated by the same three groups with 19.7% diatoms,48.4% chlorophytes,and 22.2% cyanobacteria.The densities of total algae and individual dominant groups were all much higher in the lake.More species of diatoms were found in the river-lake segment;whereas more chlorophyte species and cyanobacteriaum species were in the lake.There were 17 dominant species including 8 diatoms,4 chlorophytes,3 cyanobacteria and 2 cryptophytes in the river-lake segment,and 21 species in the lake,including 2 diatoms,9 chlorophytes,6 cyanobacteria,3 cryptophytes and a dinoflagellate.In eutrophic conditions,chlorophytes and cyanobacteria may proliferate in a lake-type area and diatoms may cause algal bloom in a relatively faster-flow lake-river type area.
基金Supported by Science and Technology Project from Jiangxi Provincial Department of Education(GJJ09430)International Scienceand Technology Cooperation Project(2006DFB91920)NationalKey Water Project(2008ZX07526-008)~~
文摘The vertical profile distribution characteristics of nitrogen in core sediments of Three Rivers Estuary in Poyang Lake were studied.The results showed that TN content in core sediments ranged from 480.0 to 1 900.0 μg/g with the change of depth,which was divided into three distribution types as follows:TN content decreases gradually with the increase of depth,TN content increases gradually with the increase of depth or higher content in the middle but lower content in two ends.NH4+-N content ranged from 8.7 ...
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0602003)the National Natural Science Foundation of China(Grant No.91544229)
文摘The lake-breeze at Taihu Lake generates a different specific heat capacity between the water body and the surrounding land. Taihu Lake has a significant impact on the atmospheric conditions and the air quality in the Yangtze River Delta. This phenomenon is referred to as the Taihu Lake effect. In this study, two simulations were conducted to determine the impact of the Taihu Lake effect in the reference experiment (R-E) and sensitivity experiments (NO_TH). The control simulations demonstrated that the meteorological field and the spatial distribution of ozone (03) concentrations over Taihu lake obviously changed once the land-use type of water body was substituted by cropland. The surface temperature of Taihu Lake was reduced under the impact of Taihu Lake, and a huge temperature difference caused a strong lake-breeze effect. The results also showed that the difference in the average concentrations of 03 between the R-E and NO_TH experiments reached 12 ppbv in most areas of Taihu Lake, all day, on 20 May 2014. During daytime (0800-1600 LST, LST=UTC+8), the influence of the Taihu Lake effect on 03 in the Suzhou region was not significant. However, the influence of the Taihu Lake effect on 03 in the Suzhou region was obvious during nighttime (1800-2400 LST). The larger changes in the physical and chemical processes were horizontal and vertical advections under the influence of the Taihu Lake effect in Taihu Lake.
基金supported by INOS, University Malaysian Terengganu
文摘The 14 stable rare earth element(REE) concentrations and distribution patterns were investigated for surface waters(n=51),soils(n=52) and sediments(n=42) from the tropical Terengganu River basin,Malaysia.The chondrite normalized REE patterns of soils developed on four geological units showed enrichment of LREE,a pronounced negative Eu,and depletion of HREE with an enrichment order granite>>metasedimentary>alluvium>volcanic.The REE patterns in sediments reflected the soil REE patterns with an ove...