A new thermomechanical(TM)coupled finite-discrete element method(FDEM)model,incorporating heat conduction,thermal cracking,and contact heat transfer,has been proposed for both continuous and discontinuous geomaterials...A new thermomechanical(TM)coupled finite-discrete element method(FDEM)model,incorporating heat conduction,thermal cracking,and contact heat transfer,has been proposed for both continuous and discontinuous geomaterials.This model incorporates a heat conduction model that can accurately calculate the thermal field in continuousediscontinuous transition processes within a finite element framework.A modified contact heat transfer model is also included,which accounts for the entire contact area of discrete bodies.To align with the finite strain theory utilized in the FDEM mechanics module,the TM coupling module in the model is based on the multiplicative decomposition of the deformation gradient.The proposed model has been applied to various scenarios,including heat conduction in both continuous and discontinuous media during transient states,thermal-induced strain and stress,and thermal cracking conditions.The thermal field calculation model and the TM coupling model have been validated by comparing the numerical results with experiment findings and analytical solutions.These numerical cases demonstrate the reliability of the proposed model convincingly,making it suitable for use across a wide range of continuous and discontinuous media.展开更多
This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discret...This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discrete element method code(FDEM)for multi-physics simulation.The governing equations are deduced based on energy and mass conservation,and static equilibrium equations,considering water/ice phase change,where the strong couplings between multi-fields are supplemented by critical coupling parameters(e.g.unfrozen water content,permeability,and thermal conductivity).The proposed model is validated against laboratory and field experiments.Results show that the cryogenic THM model can well predict the evolution of strongly coupled processes observed in frozen media(e.g.heat transfer,water migration,and frost heave deformation),while also capturing,as emergent properties of the model,important phenomena(e.g.latent heat,cryogenic suction,ice expansion and distinct three-zone distribution)caused by water/ice phase change at laboratory and field scales,which are difficult to be all revealed by existing THM models.The novel modeling framework presents a gateway to further understanding and predicting the multi-physical coupling behavior of frozen media in cold regions.展开更多
颗粒材料具有非连续、离散性等特征,在进行数值模拟时面临着较大的计算压力。通过将精确缩尺准则和粗粒化方法引入到连续-离散耦合(combined finite-discrete element method,FDEM)方法中,旨在为加速基于FDEM的颗粒材料数值模拟提供一...颗粒材料具有非连续、离散性等特征,在进行数值模拟时面临着较大的计算压力。通过将精确缩尺准则和粗粒化方法引入到连续-离散耦合(combined finite-discrete element method,FDEM)方法中,旨在为加速基于FDEM的颗粒材料数值模拟提供一种解决方案。基于精确缩尺和粗粒化等理论,推导了FDEM中应遵循的精确缩尺准则,在此基础上分别进行了等粒径颗粒体系及二元颗粒体系的三轴剪切数值试验。试验结果表明,在未引入精确缩尺准则时,粗粒化模型表现的力学响应特征会发生改变,结果出现失真,因此必须对粗粒化模型参数进行修正。引入精确缩尺准则后,粗粒化模型的力学响应特征会得到补正。试验结果论证了FDEM引入精确缩尺准则和粗粒化方法的有效性,即能在近似原始颗粒体系的条件下大幅度提升采用FDEM进行颗粒材料数值模拟的计算效率。基于数值试验结果进行了宏细观力学分析,宏观应力变形和细观接触力相互映证,揭示了精确缩尺和粗粒化方法的细观力学机理。展开更多
为了研究混凝土在轴向应力作用下的微裂纹萌生扩展过程和位移场、应力场的变化,采用有限-离散元法(Combined finite-discrete element method, FDEM)进行混凝土数值模型重构,生成了结构上含多边形随机骨料、砂浆和界面过渡区三相物质的...为了研究混凝土在轴向应力作用下的微裂纹萌生扩展过程和位移场、应力场的变化,采用有限-离散元法(Combined finite-discrete element method, FDEM)进行混凝土数值模型重构,生成了结构上含多边形随机骨料、砂浆和界面过渡区三相物质的数值模型。主要结论如下:(1)有限-离散元法可以很好地模拟混凝土在外部轴向荷载下开裂的全过程,包括微裂纹萌生、扩展、贯通等过程。(2)由骨料、砂浆和两者之间的界面过渡区造成的力学参数非均质性和混凝土内部结构的非均质性共同造成了混凝土位移场和应力场分布的不均匀性。且界面过渡区由于力学参数较为薄弱,最易萌生微裂纹,首先产生破坏。(3)非均质性会影响混凝土的局部应力场分布,造成应力集中现象。(4)FDEM能够较好地模拟高性能混凝土的拉压比(0.064),为更进一步模拟大尺度混凝土建筑物的工程特性打下良好的基础。展开更多
Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed ...Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stressinducedmicrocracking increases with depth and in-situ stress. Laboratory results indicate that thephysical properties of rocks such as strength, deformability, P-wave velocity and permeability areinfluenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM)is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks usingthe proposed micro discrete fracture network (mDFN) approach. The characteristics of the microcracksrequired to create mDFN models are obtained through image analyses of thin sections of Lac du Bonnetgranite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial,triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data.The FDEM-mDFN models indicate that micro-heterogeneity has a profound influence on both the mechanicalbehavior and resultant fracture pattern. An increase in the microcrack intensity leads to areduction in the strength of the sample and changes the character of the rock strength envelope. Spallingand axial splitting dominate the failure mode at low confinement while shear failure is the dominantfailure mode at high confinement. Numerical results from simulated compression tests show thatmicrocracking reduces the cohesive component of strength alone, and the frictional strength componentremains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced bythe presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. Theimportance of microcrack heterogeneity in reproducing a bi-linear or S-shape failure envelope and itseffects on the mechanisms leading to spalling damage near an underground opening are also discussed.展开更多
岩石热破裂研究在地热开采、核废料处置、石油开采中具有重要的工程应用价值和理论价值。基于FDEM(finite discrete element method)方法,用建立的FDEM-TM(finite discrete element method with thermo-mechanical coupling)方法对...岩石热破裂研究在地热开采、核废料处置、石油开采中具有重要的工程应用价值和理论价值。基于FDEM(finite discrete element method)方法,用建立的FDEM-TM(finite discrete element method with thermo-mechanical coupling)方法对一个圆筒试样在两种不同温度边界条件下的热破裂进行了分析。研究表明,当内边界温度保持不变,外边界温度不断增大时(Tr0〈TR0),起裂前,圆盘内侧处于受压状态,而圆盘外侧处于拉伸状态;当拉应力超过材料的抗拉强度时,从圆盘外边界起裂,从外向内扩展,形成发散裂纹。当外边界温度保持不变,内边界温度不断增大时(Tr0〉TR0),起裂前,圆盘内侧处于受压状态,而圆盘外侧处于拉伸状态;当拉应力超过材料的抗拉强度时,从圆盘外边界起裂,从外向内扩展,形成从外向内扩展的径向裂纹。模拟结果和已有文献结果保持较好的一致性,验证了FDEM-TM方法模拟岩石热破裂的有效性。展开更多
基金supported by the Research Grants Council of Hong Kong (General Research Fund Project Nos.17200721 and 17202423)the National Natural Science Foundation of China (Grant No.42377149).
文摘A new thermomechanical(TM)coupled finite-discrete element method(FDEM)model,incorporating heat conduction,thermal cracking,and contact heat transfer,has been proposed for both continuous and discontinuous geomaterials.This model incorporates a heat conduction model that can accurately calculate the thermal field in continuousediscontinuous transition processes within a finite element framework.A modified contact heat transfer model is also included,which accounts for the entire contact area of discrete bodies.To align with the finite strain theory utilized in the FDEM mechanics module,the TM coupling module in the model is based on the multiplicative decomposition of the deformation gradient.The proposed model has been applied to various scenarios,including heat conduction in both continuous and discontinuous media during transient states,thermal-induced strain and stress,and thermal cracking conditions.The thermal field calculation model and the TM coupling model have been validated by comparing the numerical results with experiment findings and analytical solutions.These numerical cases demonstrate the reliability of the proposed model convincingly,making it suitable for use across a wide range of continuous and discontinuous media.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)Discovery Grants 341275,NSERC CRDPJ 543894-19,and NSERC/Energi Simulation Industrial Research Chair programfunding he received from Lassonde International Graduate Scholarship in Mining at the University of Toronto+1 种基金supported by the FCE Start-up Fund for New Recruits at the Hong Kong Polytechnic University (P0034042)the Early Career Scheme and the General Research Fund Scheme of the Research Grants Council of the Hong Kong SAR,China (Project Nos.PolyU 25220021 and PolyU 15227222).
文摘This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discrete element method code(FDEM)for multi-physics simulation.The governing equations are deduced based on energy and mass conservation,and static equilibrium equations,considering water/ice phase change,where the strong couplings between multi-fields are supplemented by critical coupling parameters(e.g.unfrozen water content,permeability,and thermal conductivity).The proposed model is validated against laboratory and field experiments.Results show that the cryogenic THM model can well predict the evolution of strongly coupled processes observed in frozen media(e.g.heat transfer,water migration,and frost heave deformation),while also capturing,as emergent properties of the model,important phenomena(e.g.latent heat,cryogenic suction,ice expansion and distinct three-zone distribution)caused by water/ice phase change at laboratory and field scales,which are difficult to be all revealed by existing THM models.The novel modeling framework presents a gateway to further understanding and predicting the multi-physical coupling behavior of frozen media in cold regions.
文摘颗粒材料具有非连续、离散性等特征,在进行数值模拟时面临着较大的计算压力。通过将精确缩尺准则和粗粒化方法引入到连续-离散耦合(combined finite-discrete element method,FDEM)方法中,旨在为加速基于FDEM的颗粒材料数值模拟提供一种解决方案。基于精确缩尺和粗粒化等理论,推导了FDEM中应遵循的精确缩尺准则,在此基础上分别进行了等粒径颗粒体系及二元颗粒体系的三轴剪切数值试验。试验结果表明,在未引入精确缩尺准则时,粗粒化模型表现的力学响应特征会发生改变,结果出现失真,因此必须对粗粒化模型参数进行修正。引入精确缩尺准则后,粗粒化模型的力学响应特征会得到补正。试验结果论证了FDEM引入精确缩尺准则和粗粒化方法的有效性,即能在近似原始颗粒体系的条件下大幅度提升采用FDEM进行颗粒材料数值模拟的计算效率。基于数值试验结果进行了宏细观力学分析,宏观应力变形和细观接触力相互映证,揭示了精确缩尺和粗粒化方法的细观力学机理。
文摘为了研究混凝土在轴向应力作用下的微裂纹萌生扩展过程和位移场、应力场的变化,采用有限-离散元法(Combined finite-discrete element method, FDEM)进行混凝土数值模型重构,生成了结构上含多边形随机骨料、砂浆和界面过渡区三相物质的数值模型。主要结论如下:(1)有限-离散元法可以很好地模拟混凝土在外部轴向荷载下开裂的全过程,包括微裂纹萌生、扩展、贯通等过程。(2)由骨料、砂浆和两者之间的界面过渡区造成的力学参数非均质性和混凝土内部结构的非均质性共同造成了混凝土位移场和应力场分布的不均匀性。且界面过渡区由于力学参数较为薄弱,最易萌生微裂纹,首先产生破坏。(3)非均质性会影响混凝土的局部应力场分布,造成应力集中现象。(4)FDEM能够较好地模拟高性能混凝土的拉压比(0.064),为更进一步模拟大尺度混凝土建筑物的工程特性打下良好的基础。
文摘Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stressinducedmicrocracking increases with depth and in-situ stress. Laboratory results indicate that thephysical properties of rocks such as strength, deformability, P-wave velocity and permeability areinfluenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM)is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks usingthe proposed micro discrete fracture network (mDFN) approach. The characteristics of the microcracksrequired to create mDFN models are obtained through image analyses of thin sections of Lac du Bonnetgranite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial,triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data.The FDEM-mDFN models indicate that micro-heterogeneity has a profound influence on both the mechanicalbehavior and resultant fracture pattern. An increase in the microcrack intensity leads to areduction in the strength of the sample and changes the character of the rock strength envelope. Spallingand axial splitting dominate the failure mode at low confinement while shear failure is the dominantfailure mode at high confinement. Numerical results from simulated compression tests show thatmicrocracking reduces the cohesive component of strength alone, and the frictional strength componentremains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced bythe presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. Theimportance of microcrack heterogeneity in reproducing a bi-linear or S-shape failure envelope and itseffects on the mechanisms leading to spalling damage near an underground opening are also discussed.
文摘岩石热破裂研究在地热开采、核废料处置、石油开采中具有重要的工程应用价值和理论价值。基于FDEM(finite discrete element method)方法,用建立的FDEM-TM(finite discrete element method with thermo-mechanical coupling)方法对一个圆筒试样在两种不同温度边界条件下的热破裂进行了分析。研究表明,当内边界温度保持不变,外边界温度不断增大时(Tr0〈TR0),起裂前,圆盘内侧处于受压状态,而圆盘外侧处于拉伸状态;当拉应力超过材料的抗拉强度时,从圆盘外边界起裂,从外向内扩展,形成发散裂纹。当外边界温度保持不变,内边界温度不断增大时(Tr0〉TR0),起裂前,圆盘内侧处于受压状态,而圆盘外侧处于拉伸状态;当拉应力超过材料的抗拉强度时,从圆盘外边界起裂,从外向内扩展,形成从外向内扩展的径向裂纹。模拟结果和已有文献结果保持较好的一致性,验证了FDEM-TM方法模拟岩石热破裂的有效性。