This paper presents the results of a study concerned with the surface hardening of Fe-based alloys and WC-8Co cemented carbide by inte- grating laser cladding and the electrospark deposition processes. Specimens of lo...This paper presents the results of a study concerned with the surface hardening of Fe-based alloys and WC-8Co cemented carbide by inte- grating laser cladding and the electrospark deposition processes. Specimens of low carbon steel were processed firstly by laser cladding with Fe-based alloy powders and then by electrospark deposition with WC-SCo cemented carbide. It is shown that, for these two treatments, the electrospark coating possesses finer microstructure than the laser coating, and the thickness and surface hardness of the electrospark coating can be substantially increased.展开更多
The Fe-based alloy coatings reinforced with in situ synthesized TiB2-TiC were prepared on Q235 steel by reactive plasma cladding using Fe901 alloy, Ti, B4C, and graphite (C) powders us raw materials. The effects of ...The Fe-based alloy coatings reinforced with in situ synthesized TiB2-TiC were prepared on Q235 steel by reactive plasma cladding using Fe901 alloy, Ti, B4C, and graphite (C) powders us raw materials. The effects of C/B4C weight percentage ratio (0 - 1. 38 ) on the microstructure , microhardness , and wet sand abrasion resistance of the coatings were investigated. The results show that the coatings consist of ( Fe, Cr ) solid solution, TiC, TiB2, Ti8C5 , and Fe3 C phases. The decrease of C/B4 C ratio is propitious to the formation of TiB2 and Tis C5. Increasing the C/B4 C ratio can help to refine the microstructure of the coatings. However, the microhardness of the middle-upper of the coatings and the wet sand abrasion resistance of the coatings degenerate with the increase of C/B4C ratio. The coating exhibits the best wet sand abrasion resistance at C/BaC =0 and its average mass loss rate per unit wear distance is 0. 001 2%/m. The change of the wet sand abrasion resistance of the coatings with the C/B4C ratio can be mainly attributed to the combined action of the changes of microhardness and the volume percentage of the ceramic reinforcements containing titanium in the coatings.展开更多
Fe-based alloy Fe-Cr-Ti-C composite layers with and without titanium ( other powder ingredients are about the same) were fabricated on Q235 steel by plasma cladding process with high-energy plasma jet as heat source...Fe-based alloy Fe-Cr-Ti-C composite layers with and without titanium ( other powder ingredients are about the same) were fabricated on Q235 steel by plasma cladding process with high-energy plasma jet as heat source. Microstructure , phase composition and micro-hardness of the layers were investigated by optical microscope (OM), X-ray diffraction (XRD), electron probe microanalysis ( EPMA ) and micro-hardness tester. The results show that the grains of the cladding layers with Ti are much finer than that of the Fe-based cladding layer without Ti. Compared with the cladding layers without Ti, there are more shingle crystals in the cladding layers with Ti and the hard phase ( Cr, Fe ) 7 C3 of the eutectic in the layers increase gradually. However, as increasing titanium content in the alloy powder, the hard phase (Cr, Fe ) 7 C3 in eutectic structure of the cladding layer increases gradually, restraining ( Cr, Fe )7 C3 carbide precipitation and decreasing the average and maximum hardness of the cladding layer.展开更多
The mechanical alloying of FeNiPB(Cu, Nb) mixed powders was studied by X-ray diffraction (XRD), transition electron microscope (TEM), scanning electron microscopy (SEM) and extended X-ray absorption fine structure (EX...The mechanical alloying of FeNiPB(Cu, Nb) mixed powders was studied by X-ray diffraction (XRD), transition electron microscope (TEM), scanning electron microscopy (SEM) and extended X-ray absorption fine structure (EXAFS). The results show that the FeNiPB(Cu, Nb) mixed powders alloy after milling for 20 h, as the milling time increases to 80h, Fe and Ni atoms are in an amorphous environment, the morphology of FeNiPB(Cu, Nb) mixed powders appears as cotton fiber and its electron diffraction pattern shows a typically diffuse amorphous halo. So FeNiPB(Cu, Nb) mixed powders transform to amorphous state under this condition. After the FeNiPB(Cu, Nb) amorphous alloy was heated at 520℃ for 1 h, the nanocrystalline FeNiPB(Cu, Nb) was produced. So, the Fe-based nanocrystalline alloy can be prepared by partially crystallizing the FeNiPB(Cu, Nb) amorphous alloy.展开更多
A gradient coating of Fe-based alloy was manufactured with rare earths (RE) by plasma surfacing on Q235 steel substrate. The coatings were studied by using X-ray diffraction(XRD), scanning electron microscope(SEM), di...A gradient coating of Fe-based alloy was manufactured with rare earths (RE) by plasma surfacing on Q235 steel substrate. The coatings were studied by using X-ray diffraction(XRD), scanning electron microscope(SEM), differential thermal analyzer(DTA), and electron probe micro-analyzer (EPMA). The results show that the phases of the two kinds of coatings(with and without RE) both include α-Fe, Fe7C3, Fe3C, Cr2B, Fe2B and FeB. The microstructure of F314 coating is mainly hypereutectic, the pro-phases Cr7C3 and Cr2B are loose, crassi, spiculate and contain microcracks. The brittleness of the coating is high, and the average hardness is 787 HV. When 0.8wt% RE was added into the F314 alloy, the microstructure varied from hypoeutectic to hypereutectic continuously, The hardness appears as gradient distribution with the highest value of 773 HV, meanwhile, the brittleness decreases significantly. The formation of gradient structure depends on the fallowing factors: (i) the conversion of RE. The addition of RE lowers the elements point and Fe-C eutectic temperature, thus the base metal melting acutely. (ii) the heating of plasma arc. Graded temperature results in directional solidification, thus the gradient structure forms easily. The main reasons for the hardness decrease with RE addition in the alloy are the ratio of hard phase lowering and the hardness of the hard phase decreasing.展开更多
Mierostrueture of the Fe-based alloy hardfaeing coating reinforced by TiC-VC particles was investigated by means of SEM, TEM, XRD and EPMA. The thermodynamics and effect of elements on the carbides were discussed. The...Mierostrueture of the Fe-based alloy hardfaeing coating reinforced by TiC-VC particles was investigated by means of SEM, TEM, XRD and EPMA. The thermodynamics and effect of elements on the carbides were discussed. The result shows that TiC-VC carbides can be formed during arc welding. Carbides with particle size of 2 ~4μm are uniformly dispersed in the matrix. Evidently the covering components and their amount affect the microstrueture and hardness of the coatings. An excellent microstructure and hardness of hardfacing coating were obtained, while the amount of graphite, FeTi and FeV was controlled within the range of 8%- 10%, 15%- 18% and 8%- 12%, respectively.展开更多
The master alloy ingots (MAI) with the nominal composition Zr 52.5 Ti 5Cu 17.9 Ni 14.6 Al 10 and Fe 61 Co 7Zr 10 Mo 5W 2B 15 (at%) were prepared by arc melting in Ti gettered Ar atmosphere. The Zr based buttons of 6 m...The master alloy ingots (MAI) with the nominal composition Zr 52.5 Ti 5Cu 17.9 Ni 14.6 Al 10 and Fe 61 Co 7Zr 10 Mo 5W 2B 15 (at%) were prepared by arc melting in Ti gettered Ar atmosphere. The Zr based buttons of 6 mm and 9 mm in diameter were fully amorphous, but those of 13 mm in diameter experienced crystallization. The glass forming ability (GFA) of Fe based alloys was relatively lower, and the buttons obtained were fully crystallized. The microhardness of the Zr based buttons was about 500(Hv), and the Fe based rod obtained by injection technique exhibited a high Vickers hardness of 1329. In addition, an amorphous crystalline transition layers were observed in both the buttons and the rods.展开更多
The effect of a high magnetic field up to 30T on phase transformation temperature and microstructure of Fe-based alloys has been reviewed. A high magnetic field accelerates ferrite transformation, changes the morpho...The effect of a high magnetic field up to 30T on phase transformation temperature and microstructure of Fe-based alloys has been reviewed. A high magnetic field accelerates ferrite transformation, changes the morphology of the transformed microstructures and increases the A3 and A1 temperature. In a magnetic field of 30T, the A1 temperature increases by about 37.1℃ for Fe-0.8C, the A3 temperature for pure Fe increases by about 33.1℃. The measured transformation temperature data are not consistent with calculation results using Weiss molecular field theory. Ferrite grains are elongated and aligned along the direction of magnetic field in Fe-0.4C and Fe-0.6C alloys by ferrite transformation, but elongated and aligned structure was not found in pure Fe, Fe-0.05C alloy and Fe-1.5Mn-0.11C-0.1V alloy.展开更多
Given the importance of oxidation on the design,optimization,safety and the performance of power generating plants during their lifetime,extensive research was required to study the oxidation behaviour of Fe-based all...Given the importance of oxidation on the design,optimization,safety and the performance of power generating plants during their lifetime,extensive research was required to study the oxidation behaviour of Fe-based alloy in contact with steam.Depending on the oxidation temperature and the chemical composition of the steel,the mechanisms of formation and the microstructural characteristics of the oxide scale were reportedly different[1].In order to study the steam corrosion of Fe-based alloy,a facility which could provide an environment of high temperature and high pressure water vapor has been developed.The oxidation behavior of Fe-based alloy in a steam environment at different conditions was studied.展开更多
This study investigates the degradation behavior of three distinct Fe-based alloys immersed in three pseudo-physiological solutions.These alloys,which have varied Mn and C contents,include a commercially available Fe-...This study investigates the degradation behavior of three distinct Fe-based alloys immersed in three pseudo-physiological solutions.These alloys,which have varied Mn and C contents,include a commercially available Fe-0.15C alloy,namely Fe–C,and two newly developed alloys,that is Fe–5Mn-0.2C(namely Fe–5Mn)and Fe–18Mn-0.6C(namely Fe–18Mn).The aim was to understand the effect of alloying elements and the testing solution on the in-vitro degradation behavior of these Fe-based materials.Static immersion degradation and potentiodynamic corrosion tests were carried out using three pseudo-physiological solutions with albumin supply,that is modified Hanks’saline solution(MHSS),phosphate buffered saline solution(PBS),and sodium chloride solution(NaCl).After two weeks of static immersion,the results revealed that Fe–5Mn,characterized by a mixture of ferrite and martensite,showed the highest degradation rate,while Fe–C,composed solely of ferrite,showed the lowest rate of degradation.The predominant degradation products in MHSS and PBS were phosphates and carbonates.In PBS,these products formed a remarkably stable protective layer on the surface,contributing to the lowest degradation rate.In contrast,porous hydroxides appeared as the main degradation products for samples immersed in NaCl solution,leading to the highest degradation rate.These results provided important insights into the customization of Fe–Mn–C alloys for a range of biomedical applications,meeting a variety of clinical requirements,and highlighting the considerable potential of Fe–Mn–C alloys for biomedical applications.展开更多
The effect of casting vacuum on thermodynamic and corrosion properties of Fe61Co7Zr8Mo5W2B17 in shape of cylinder of 3 mm in diameter and ribbon of 20?40μm in thickness and 2?3 mm in width were investigated with X-ra...The effect of casting vacuum on thermodynamic and corrosion properties of Fe61Co7Zr8Mo5W2B17 in shape of cylinder of 3 mm in diameter and ribbon of 20?40μm in thickness and 2?3 mm in width were investigated with X-ray diffraction (XRD), differential scanning calorimetry (DSC), dilatometer (DIL), scanning electron microscopy (SEM) and electrochemical station. It is found that high casting vacuum can improve the glass forming ability (GFA), the contraction degree during heating, and the pitting resistance of the glassy alloy, which can be ascribed to the fact that the dissolution of tungsten in the melt is improved under the high casting vacuum.展开更多
Fe-based amorphous alloys with ductility were synthesized using the commercial cast iron QT50 (denoted as QT) with the combining minor addition of B and Al by single roller melt-spinning. The melt-spun (QT1-xBx)99Al1 ...Fe-based amorphous alloys with ductility were synthesized using the commercial cast iron QT50 (denoted as QT) with the combining minor addition of B and Al by single roller melt-spinning. The melt-spun (QT1-xBx)99Al1 (x is from 0.006wt% to 0.01wt%) amorphous alloys exhibit onset crystallization temperatures and Curie temperatures of 759-780 and 629-642 K respectively, and whi- ch increase with B content. The amorphous ribbons are ductile and can be bent 180° without breaking. With the increase in B content from 0.006wt% to 0.01wt%, the Vickers microhardness of the amorphous alloys increases from Hv 830 to Hv 1110. The effects of the additional B and Al elements on the glass forming ability and mechanical properties were also discussed.展开更多
Temperature has great influence on the stacking fault energy (SFE). Both SFE and dγ 0/dT for Fe-based alloys containing substitutional or interstitial atoms increase with increasing temperature. Based on the thermody...Temperature has great influence on the stacking fault energy (SFE). Both SFE and dγ 0/dT for Fe-based alloys containing substitutional or interstitial atoms increase with increasing temperature. Based on the thermodynamic model of SFE, the equation $\frac{{d\gamma _0 }}{{dT}} = \frac{{d\gamma ^{ch} }}{{dT}} + \frac{{d\gamma ^{se\user1{g}} }}{{dT}} + \frac{{d\gamma ^{MG} }}{{dT}}$ and those expressions for three items involved are established. The calculatedγ 0/dT is generally consistent with the experimental. The influence of chemical free energy on the temperature dependence of SFE is almost constant, and is obviously stronger than that of magnetic and segregation contributions. The magnetic transition and the segregation of alloying elements at stacking faults cause a decrease in SFE of the alloys when temperature increases; that is, dγ MG/dT<0 and dγ seg/dT<0. Meanwhile, such an influence decreases with increasing temperature, except for the dγ seg/dT} of Fe?Mn?Si alloys. With these results, the experimental phenomena that the SFE of Fe-based alloys is not zero at the thermo-dynamically equilibrated temperature (T 0) of the λ and ε phases and they are positive both atT>T 0 andT<T 0 can be reasonably explained.展开更多
The Fe-based amorphous alloy coatings with different porosities were deposited on Q235 steel substrates by means of atmospheric plasma spraying(APS).The as-sprayed coatings were remelted by the facility of a Nd:YAG la...The Fe-based amorphous alloy coatings with different porosities were deposited on Q235 steel substrates by means of atmospheric plasma spraying(APS).The as-sprayed coatings were remelted by the facility of a Nd:YAG laser to further enhance their compactness and bonding strength via orthogonal experiment design.The effects of laser remelting on the microstructure,phase compositions and mechanical properties of the as-sprayed coatings were investigated by optical microscopy,scanning electron microscope,X-ray diffraction and Vickers microhardness tester.The corrosion performance of the coatings was evaluated by both potential dynamic measurements(PDM)and electrochemical impedance spectroscopy(EIS)in a 10%NaOH solution.The results indicate that laser power of 700 W,scanning velocity of 4 mm/s,beam size of 3 mm and porosity of 1.19%are the optimized remelting process parameters.The laser-remelted coatings exhibite more homogenous structure as strong metallurgical bonding to substrates.The amorphous phases in the as-sprayed coatings crystallize toα-Fe,Fe2Si,Fe3.5B,and Fe2W phases for the high temperature and rapid solidification in the remelting process.The microhardness values of as-sprayed are in the range of 700-800 HV0.1,while the microhardness values of the remelted coatings are enhanced slightly to 750-850 HV0.1.Both PDM and EIS analysis results show that the remelted coatings exhibite relatively excellent corrosion resistance compared with the stainless steel 1Cr18Ni9Ti,however the corrosion resistance of the remelted coatings is inferior to the as-sprayed amorphous coatings.展开更多
The dependences of the power loss per cycle on frequency have been investigated in the ranges of 100 Hz<= f<=25000 Hz and 0.1 T< =Bm <=1.0 T for three main original magnetic states in five sorts of Fe-base...The dependences of the power loss per cycle on frequency have been investigated in the ranges of 100 Hz<= f<=25000 Hz and 0.1 T< =Bm <=1.0 T for three main original magnetic states in five sorts of Fe-based nanocrystalline soft magnetic alloys. The measured and calculated results showed that the total power loss per cycle clearly exhibited a nonlinear behavior in the range below 3 kHz~5 kHz depending on both the magnetic state and the value of Dm, whereas it showed a quasi-linear behavior above this range. The total loss was decomposed into hysteresis loss, classical eddy current loss and excess loss, the obvious nonlinear behavior has been confirmed to be completely determined by the dependence of the excess loss on frequency. It has been indicated that the change rate of the excess loss per cycle with respect to frequency sharp decreases with increasing frequency in the range below about 3 kHz~5 kHz, wherease the rate of change slowly varies above this range, thus leading to the quasilinear behavior of the total loss per cycle. In this paper, some linear expressions of the total loss per cycle has been given in a wider medium-frequency segment, which can be used for roughly estimating the total loss.展开更多
The dependences of the power loss per cycle on frequency f and amplitude flux density Bm have been investigated for the three main original magnetic states in five sorts of Fe-based nanocrystalline soft magnetic alloy...The dependences of the power loss per cycle on frequency f and amplitude flux density Bm have been investigated for the three main original magnetic states in five sorts of Fe-based nanocrystalline soft magnetic alloys in the ranges of 10 Hz<=f<=1000 Hz and 0.4 T<= Bm <=1.0 T. The total loss P is decomposed into the sum of the hysteresis loss Physt, the classical eddy current loss Pel and the excess loss Pexc. Physt has been found to be proportional to Bm^2 and f. The behavior of Pexc/f vs f being equivalent to P/f vs f clearly exhibits nonlinearity in the range not more than about 120 Hz, whereas the behavior of P/f vs f roughly shows linearity in the range far above 100 Hz and not more than 1000 Hz. In the range up to 1000 Hz, Physt is dominant in the original high permeability state and the state of low residual flux density, whereas Pexc in the state of high residual flux density is dominant in the wider range above about 100 Hz. The framework of the statistical theory of power loss has been used for representing the behavior of Pexc/f vs f. It has been found that the number n of the simultaneously active 'Magnetic Objects' linearly varies as n = n0 + Hexc/H0 as a function of the dynamic field Hexc in the range below about 120 Hz, whereas n approximately follows a law of the form n = n0 + (Hexc/H0)^m with 1 < m < 2 in the range far above 100 Hz and not more than 1000 Hz. The values of the field HO in principle related to the microstructure and the domain structure have been calculated for the three states.展开更多
The experimental results concerning the effects of Mo on the glass-forming ability(GFA), thermal stability, and mechanical, anticorrosion, and magnetic properties of an(Fe_(71.2)B_(24)Y_(4.8))_(96)Nb_4 bulk metallic g...The experimental results concerning the effects of Mo on the glass-forming ability(GFA), thermal stability, and mechanical, anticorrosion, and magnetic properties of an(Fe_(71.2)B_(24)Y_(4.8))_(96)Nb_4 bulk metallic glass(BMG) were presented. An industrial Fe–B alloy was used as the raw material, and a series of Fe-based BMGs were synthesized. In BMGs with the Mo contents of approximately 1at%–2at%, the cast alloy reached a critical diameter of 6 mm. The hardness and fracture strength also reached their maximum values in this alloy system. However, the anticorrosion and magnetic properties of the BMGs were not substantially improved by the addition of Mo. The low cost, good GFA, high hardness, and high fracture strength of the Fe-based BMGs developed in this work suggest that they are potential candidates for commercial applications.展开更多
Fe-based Prussian blue(Fe-PB)cathode material shows great application potential in sodium(Na)-ion batteries due to its high theoretical capacity,long cycle life,low cost,and simple preparation process.However,the crys...Fe-based Prussian blue(Fe-PB)cathode material shows great application potential in sodium(Na)-ion batteries due to its high theoretical capacity,long cycle life,low cost,and simple preparation process.However,the crystalline water and vacancies of Fe-PB lattice,the low electrical conductivity,and the dissolution of metal ions lead to limited capacity and poor cycling stability.In this work,a perylene tetracarboxylic dianhydride amine(PTCDA)coating layer is successfully fabricated on the surface of Fe-PB by a liquid-phase method.The aminated PTCDA(PTCA)coating not only increases the specific surface area and electronic conductivity but also effectively reduces the crystalline water and vacancies,which avoids the erosion of Fe-PB by electrolyte.Consequently,the PTCA layer reduces the charge transfer resistance,enhances the Na-ion diffusion coefficient,and improves the structure stability.The PTCA-coated Fe-PB exhibits superior Na storage performance with a first discharge capacity of 145.2 mAh g^(−1) at 100 mA g^(−1).Long cycling tests exhibit minimal capacity decay of 0.027%per cycle over 1000 cycles at 1 A g^(−1).Therefore,this PTCA coating strategy has shown promising competence in enhancing the electrochemical performance of Fe-PB,which can potentially serve as a universal electrode coating strategy for Na-ion batteries.展开更多
Since it was discovered that stress annealing induced larger anisotropies compared to other annealing methods in amorphous and nanocrystalline alloys, there has been a lot of research done to explain this phenomenon. ...Since it was discovered that stress annealing induced larger anisotropies compared to other annealing methods in amorphous and nanocrystalline alloys, there has been a lot of research done to explain this phenomenon. This has led to many suggestions about the origin of this stress-induced magnetic anisotropy, but till now the origin is explained with two competing models: the magnetoelastic effect model and the diatomic pair ordering model. In spite of these theories, the origin of the stress-induced anisotropy is still under discussion because direct observation of structural anisotropy is still lacking. In this paper, we have reviewed some of the characterization techniques which have been used to discuss the origin of stress-induced magnetic anisotropy and the progress which has been made thus far in unifying all the contrasting views which has been suggested to be the origin of the stress-induced anisotropy in FINEMET alloys.展开更多
Because of the microstructural anisotropy for laser cladding materials,the tribo-corrosion performance can vary significantly with different directions.In this study,one certain Fe-based coating was fabricated by lase...Because of the microstructural anisotropy for laser cladding materials,the tribo-corrosion performance can vary significantly with different directions.In this study,one certain Fe-based coating was fabricated by laser cladding.To study the effects of anisotropy,three working surfaces(0°,45°,and 90°to the building direction)were machined from the laser cladding samples;as-cast samples with an approximately homogeneous structure were prepared as controls.The tribo-corrosion tests were conducted in a 3.5 wt%NaCl solution with varying normal loads(5,10,and 15 N).The results demonstrated that the 45°surface has superior friction stability,corrosion resistance,and wear resistance.This was directly related to the crystal orientation and grain boundary density.In addition,a refined microstructure may enhance tribo-corrosion properties by increasing deformation resistance and decreasing surface activity.展开更多
文摘This paper presents the results of a study concerned with the surface hardening of Fe-based alloys and WC-8Co cemented carbide by inte- grating laser cladding and the electrospark deposition processes. Specimens of low carbon steel were processed firstly by laser cladding with Fe-based alloy powders and then by electrospark deposition with WC-SCo cemented carbide. It is shown that, for these two treatments, the electrospark coating possesses finer microstructure than the laser coating, and the thickness and surface hardness of the electrospark coating can be substantially increased.
基金This work is supported by the National Natural Science Foundation of China (Grant No. 51101051 ), the Natural Science Foundation of Jiangsu Province (Grant No. BK2011250), and Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1101017 C).
文摘The Fe-based alloy coatings reinforced with in situ synthesized TiB2-TiC were prepared on Q235 steel by reactive plasma cladding using Fe901 alloy, Ti, B4C, and graphite (C) powders us raw materials. The effects of C/B4C weight percentage ratio (0 - 1. 38 ) on the microstructure , microhardness , and wet sand abrasion resistance of the coatings were investigated. The results show that the coatings consist of ( Fe, Cr ) solid solution, TiC, TiB2, Ti8C5 , and Fe3 C phases. The decrease of C/B4 C ratio is propitious to the formation of TiB2 and Tis C5. Increasing the C/B4 C ratio can help to refine the microstructure of the coatings. However, the microhardness of the middle-upper of the coatings and the wet sand abrasion resistance of the coatings degenerate with the increase of C/B4C ratio. The coating exhibits the best wet sand abrasion resistance at C/BaC =0 and its average mass loss rate per unit wear distance is 0. 001 2%/m. The change of the wet sand abrasion resistance of the coatings with the C/B4C ratio can be mainly attributed to the combined action of the changes of microhardness and the volume percentage of the ceramic reinforcements containing titanium in the coatings.
基金Supported by Natural Science Foundation of Shandong Province (No. ZR2011EMM017), Project of Shandong Province Higher Educational Science and Technology Program (No. J12LA56) and in part by NSFC (No. 51004077).
文摘Fe-based alloy Fe-Cr-Ti-C composite layers with and without titanium ( other powder ingredients are about the same) were fabricated on Q235 steel by plasma cladding process with high-energy plasma jet as heat source. Microstructure , phase composition and micro-hardness of the layers were investigated by optical microscope (OM), X-ray diffraction (XRD), electron probe microanalysis ( EPMA ) and micro-hardness tester. The results show that the grains of the cladding layers with Ti are much finer than that of the Fe-based cladding layer without Ti. Compared with the cladding layers without Ti, there are more shingle crystals in the cladding layers with Ti and the hard phase ( Cr, Fe ) 7 C3 of the eutectic in the layers increase gradually. However, as increasing titanium content in the alloy powder, the hard phase (Cr, Fe ) 7 C3 in eutectic structure of the cladding layer increases gradually, restraining ( Cr, Fe )7 C3 carbide precipitation and decreasing the average and maximum hardness of the cladding layer.
文摘The mechanical alloying of FeNiPB(Cu, Nb) mixed powders was studied by X-ray diffraction (XRD), transition electron microscope (TEM), scanning electron microscopy (SEM) and extended X-ray absorption fine structure (EXAFS). The results show that the FeNiPB(Cu, Nb) mixed powders alloy after milling for 20 h, as the milling time increases to 80h, Fe and Ni atoms are in an amorphous environment, the morphology of FeNiPB(Cu, Nb) mixed powders appears as cotton fiber and its electron diffraction pattern shows a typically diffuse amorphous halo. So FeNiPB(Cu, Nb) mixed powders transform to amorphous state under this condition. After the FeNiPB(Cu, Nb) amorphous alloy was heated at 520℃ for 1 h, the nanocrystalline FeNiPB(Cu, Nb) was produced. So, the Fe-based nanocrystalline alloy can be prepared by partially crystallizing the FeNiPB(Cu, Nb) amorphous alloy.
文摘A gradient coating of Fe-based alloy was manufactured with rare earths (RE) by plasma surfacing on Q235 steel substrate. The coatings were studied by using X-ray diffraction(XRD), scanning electron microscope(SEM), differential thermal analyzer(DTA), and electron probe micro-analyzer (EPMA). The results show that the phases of the two kinds of coatings(with and without RE) both include α-Fe, Fe7C3, Fe3C, Cr2B, Fe2B and FeB. The microstructure of F314 coating is mainly hypereutectic, the pro-phases Cr7C3 and Cr2B are loose, crassi, spiculate and contain microcracks. The brittleness of the coating is high, and the average hardness is 787 HV. When 0.8wt% RE was added into the F314 alloy, the microstructure varied from hypoeutectic to hypereutectic continuously, The hardness appears as gradient distribution with the highest value of 773 HV, meanwhile, the brittleness decreases significantly. The formation of gradient structure depends on the fallowing factors: (i) the conversion of RE. The addition of RE lowers the elements point and Fe-C eutectic temperature, thus the base metal melting acutely. (ii) the heating of plasma arc. Graded temperature results in directional solidification, thus the gradient structure forms easily. The main reasons for the hardness decrease with RE addition in the alloy are the ratio of hard phase lowering and the hardness of the hard phase decreasing.
文摘Mierostrueture of the Fe-based alloy hardfaeing coating reinforced by TiC-VC particles was investigated by means of SEM, TEM, XRD and EPMA. The thermodynamics and effect of elements on the carbides were discussed. The result shows that TiC-VC carbides can be formed during arc welding. Carbides with particle size of 2 ~4μm are uniformly dispersed in the matrix. Evidently the covering components and their amount affect the microstrueture and hardness of the coatings. An excellent microstructure and hardness of hardfacing coating were obtained, while the amount of graphite, FeTi and FeV was controlled within the range of 8%- 10%, 15%- 18% and 8%- 12%, respectively.
文摘The master alloy ingots (MAI) with the nominal composition Zr 52.5 Ti 5Cu 17.9 Ni 14.6 Al 10 and Fe 61 Co 7Zr 10 Mo 5W 2B 15 (at%) were prepared by arc melting in Ti gettered Ar atmosphere. The Zr based buttons of 6 mm and 9 mm in diameter were fully amorphous, but those of 13 mm in diameter experienced crystallization. The glass forming ability (GFA) of Fe based alloys was relatively lower, and the buttons obtained were fully crystallized. The microhardness of the Zr based buttons was about 500(Hv), and the Fe based rod obtained by injection technique exhibited a high Vickers hardness of 1329. In addition, an amorphous crystalline transition layers were observed in both the buttons and the rods.
文摘The effect of a high magnetic field up to 30T on phase transformation temperature and microstructure of Fe-based alloys has been reviewed. A high magnetic field accelerates ferrite transformation, changes the morphology of the transformed microstructures and increases the A3 and A1 temperature. In a magnetic field of 30T, the A1 temperature increases by about 37.1℃ for Fe-0.8C, the A3 temperature for pure Fe increases by about 33.1℃. The measured transformation temperature data are not consistent with calculation results using Weiss molecular field theory. Ferrite grains are elongated and aligned along the direction of magnetic field in Fe-0.4C and Fe-0.6C alloys by ferrite transformation, but elongated and aligned structure was not found in pure Fe, Fe-0.05C alloy and Fe-1.5Mn-0.11C-0.1V alloy.
文摘Given the importance of oxidation on the design,optimization,safety and the performance of power generating plants during their lifetime,extensive research was required to study the oxidation behaviour of Fe-based alloy in contact with steam.Depending on the oxidation temperature and the chemical composition of the steel,the mechanisms of formation and the microstructural characteristics of the oxide scale were reportedly different[1].In order to study the steam corrosion of Fe-based alloy,a facility which could provide an environment of high temperature and high pressure water vapor has been developed.The oxidation behavior of Fe-based alloy in a steam environment at different conditions was studied.
基金Natural Science and Engineering Research Council of Canada,and PRIMA(Quebec Ministry for Economy and Innovation).DM holds a Canada Research Chair Tier I(2012–2026).
文摘This study investigates the degradation behavior of three distinct Fe-based alloys immersed in three pseudo-physiological solutions.These alloys,which have varied Mn and C contents,include a commercially available Fe-0.15C alloy,namely Fe–C,and two newly developed alloys,that is Fe–5Mn-0.2C(namely Fe–5Mn)and Fe–18Mn-0.6C(namely Fe–18Mn).The aim was to understand the effect of alloying elements and the testing solution on the in-vitro degradation behavior of these Fe-based materials.Static immersion degradation and potentiodynamic corrosion tests were carried out using three pseudo-physiological solutions with albumin supply,that is modified Hanks’saline solution(MHSS),phosphate buffered saline solution(PBS),and sodium chloride solution(NaCl).After two weeks of static immersion,the results revealed that Fe–5Mn,characterized by a mixture of ferrite and martensite,showed the highest degradation rate,while Fe–C,composed solely of ferrite,showed the lowest rate of degradation.The predominant degradation products in MHSS and PBS were phosphates and carbonates.In PBS,these products formed a remarkably stable protective layer on the surface,contributing to the lowest degradation rate.In contrast,porous hydroxides appeared as the main degradation products for samples immersed in NaCl solution,leading to the highest degradation rate.These results provided important insights into the customization of Fe–Mn–C alloys for a range of biomedical applications,meeting a variety of clinical requirements,and highlighting the considerable potential of Fe–Mn–C alloys for biomedical applications.
基金Project(51171091)supported by the National Natural Science Foundation of ChinaProject(JQ201012)supported by the Excellent Youth Project of Shandong Natural Science Foundation,ChinaProject(2012CB825702)supported by the National Basic Research Program of China
文摘The effect of casting vacuum on thermodynamic and corrosion properties of Fe61Co7Zr8Mo5W2B17 in shape of cylinder of 3 mm in diameter and ribbon of 20?40μm in thickness and 2?3 mm in width were investigated with X-ray diffraction (XRD), differential scanning calorimetry (DSC), dilatometer (DIL), scanning electron microscopy (SEM) and electrochemical station. It is found that high casting vacuum can improve the glass forming ability (GFA), the contraction degree during heating, and the pitting resistance of the glassy alloy, which can be ascribed to the fact that the dissolution of tungsten in the melt is improved under the high casting vacuum.
基金This work was financially supported by the National Natural Science Foundation of China (No.50225103, 50471001 and 50631010).
文摘Fe-based amorphous alloys with ductility were synthesized using the commercial cast iron QT50 (denoted as QT) with the combining minor addition of B and Al by single roller melt-spinning. The melt-spun (QT1-xBx)99Al1 (x is from 0.006wt% to 0.01wt%) amorphous alloys exhibit onset crystallization temperatures and Curie temperatures of 759-780 and 629-642 K respectively, and whi- ch increase with B content. The amorphous ribbons are ductile and can be bent 180° without breaking. With the increase in B content from 0.006wt% to 0.01wt%, the Vickers microhardness of the amorphous alloys increases from Hv 830 to Hv 1110. The effects of the additional B and Al elements on the glass forming ability and mechanical properties were also discussed.
基金This work was supported by the National Natural Science Foundation of China (Grant No.59671023) the Fund for Ph. D. Program, the Ministry of Education (No. 97024835) of China and the Emerson Electric Co. USA.
文摘Temperature has great influence on the stacking fault energy (SFE). Both SFE and dγ 0/dT for Fe-based alloys containing substitutional or interstitial atoms increase with increasing temperature. Based on the thermodynamic model of SFE, the equation $\frac{{d\gamma _0 }}{{dT}} = \frac{{d\gamma ^{ch} }}{{dT}} + \frac{{d\gamma ^{se\user1{g}} }}{{dT}} + \frac{{d\gamma ^{MG} }}{{dT}}$ and those expressions for three items involved are established. The calculatedγ 0/dT is generally consistent with the experimental. The influence of chemical free energy on the temperature dependence of SFE is almost constant, and is obviously stronger than that of magnetic and segregation contributions. The magnetic transition and the segregation of alloying elements at stacking faults cause a decrease in SFE of the alloys when temperature increases; that is, dγ MG/dT<0 and dγ seg/dT<0. Meanwhile, such an influence decreases with increasing temperature, except for the dγ seg/dT} of Fe?Mn?Si alloys. With these results, the experimental phenomena that the SFE of Fe-based alloys is not zero at the thermo-dynamically equilibrated temperature (T 0) of the λ and ε phases and they are positive both atT>T 0 andT<T 0 can be reasonably explained.
基金National Natural Science Foundation of China(50805104)
文摘The Fe-based amorphous alloy coatings with different porosities were deposited on Q235 steel substrates by means of atmospheric plasma spraying(APS).The as-sprayed coatings were remelted by the facility of a Nd:YAG laser to further enhance their compactness and bonding strength via orthogonal experiment design.The effects of laser remelting on the microstructure,phase compositions and mechanical properties of the as-sprayed coatings were investigated by optical microscopy,scanning electron microscope,X-ray diffraction and Vickers microhardness tester.The corrosion performance of the coatings was evaluated by both potential dynamic measurements(PDM)and electrochemical impedance spectroscopy(EIS)in a 10%NaOH solution.The results indicate that laser power of 700 W,scanning velocity of 4 mm/s,beam size of 3 mm and porosity of 1.19%are the optimized remelting process parameters.The laser-remelted coatings exhibite more homogenous structure as strong metallurgical bonding to substrates.The amorphous phases in the as-sprayed coatings crystallize toα-Fe,Fe2Si,Fe3.5B,and Fe2W phases for the high temperature and rapid solidification in the remelting process.The microhardness values of as-sprayed are in the range of 700-800 HV0.1,while the microhardness values of the remelted coatings are enhanced slightly to 750-850 HV0.1.Both PDM and EIS analysis results show that the remelted coatings exhibite relatively excellent corrosion resistance compared with the stainless steel 1Cr18Ni9Ti,however the corrosion resistance of the remelted coatings is inferior to the as-sprayed amorphous coatings.
文摘The dependences of the power loss per cycle on frequency have been investigated in the ranges of 100 Hz<= f<=25000 Hz and 0.1 T< =Bm <=1.0 T for three main original magnetic states in five sorts of Fe-based nanocrystalline soft magnetic alloys. The measured and calculated results showed that the total power loss per cycle clearly exhibited a nonlinear behavior in the range below 3 kHz~5 kHz depending on both the magnetic state and the value of Dm, whereas it showed a quasi-linear behavior above this range. The total loss was decomposed into hysteresis loss, classical eddy current loss and excess loss, the obvious nonlinear behavior has been confirmed to be completely determined by the dependence of the excess loss on frequency. It has been indicated that the change rate of the excess loss per cycle with respect to frequency sharp decreases with increasing frequency in the range below about 3 kHz~5 kHz, wherease the rate of change slowly varies above this range, thus leading to the quasilinear behavior of the total loss per cycle. In this paper, some linear expressions of the total loss per cycle has been given in a wider medium-frequency segment, which can be used for roughly estimating the total loss.
基金National Amorphous and Nanocrystalline Alloy Engineering Researeh Cease
文摘The dependences of the power loss per cycle on frequency f and amplitude flux density Bm have been investigated for the three main original magnetic states in five sorts of Fe-based nanocrystalline soft magnetic alloys in the ranges of 10 Hz<=f<=1000 Hz and 0.4 T<= Bm <=1.0 T. The total loss P is decomposed into the sum of the hysteresis loss Physt, the classical eddy current loss Pel and the excess loss Pexc. Physt has been found to be proportional to Bm^2 and f. The behavior of Pexc/f vs f being equivalent to P/f vs f clearly exhibits nonlinearity in the range not more than about 120 Hz, whereas the behavior of P/f vs f roughly shows linearity in the range far above 100 Hz and not more than 1000 Hz. In the range up to 1000 Hz, Physt is dominant in the original high permeability state and the state of low residual flux density, whereas Pexc in the state of high residual flux density is dominant in the wider range above about 100 Hz. The framework of the statistical theory of power loss has been used for representing the behavior of Pexc/f vs f. It has been found that the number n of the simultaneously active 'Magnetic Objects' linearly varies as n = n0 + Hexc/H0 as a function of the dynamic field Hexc in the range below about 120 Hz, whereas n approximately follows a law of the form n = n0 + (Hexc/H0)^m with 1 < m < 2 in the range far above 100 Hz and not more than 1000 Hz. The values of the field HO in principle related to the microstructure and the domain structure have been calculated for the three states.
基金financially supported by the National Natural Science Foundation of China (Nos.51322103, 51571079, and 51601050)the National Key Technologies R&D program of China (Nos.2015CB856800 and 2016YFB0300500)the Fundamental Research Funds for the Central Universities of China (Nos.JZ2016HGBZ0772 and JZ2016HGPB0671)
文摘The experimental results concerning the effects of Mo on the glass-forming ability(GFA), thermal stability, and mechanical, anticorrosion, and magnetic properties of an(Fe_(71.2)B_(24)Y_(4.8))_(96)Nb_4 bulk metallic glass(BMG) were presented. An industrial Fe–B alloy was used as the raw material, and a series of Fe-based BMGs were synthesized. In BMGs with the Mo contents of approximately 1at%–2at%, the cast alloy reached a critical diameter of 6 mm. The hardness and fracture strength also reached their maximum values in this alloy system. However, the anticorrosion and magnetic properties of the BMGs were not substantially improved by the addition of Mo. The low cost, good GFA, high hardness, and high fracture strength of the Fe-based BMGs developed in this work suggest that they are potential candidates for commercial applications.
基金National Key Research and Development Program of China,Grant/Award Number:2022YFB3807700Hubei Natural Science Foundation Innovation Group Project,Grant/Award Number:2022CFA020+2 种基金Joint Funds of the Hubei Natural Science Foundation Innovation and Development,Grant/Award Number:2022CFD034Major Technological Innovation Project of Hubei Science and Technology Department,Grant/Award Number:2019AAA164National Natural Science Foundation of China,Grant/Award Number:2022CFD034。
文摘Fe-based Prussian blue(Fe-PB)cathode material shows great application potential in sodium(Na)-ion batteries due to its high theoretical capacity,long cycle life,low cost,and simple preparation process.However,the crystalline water and vacancies of Fe-PB lattice,the low electrical conductivity,and the dissolution of metal ions lead to limited capacity and poor cycling stability.In this work,a perylene tetracarboxylic dianhydride amine(PTCDA)coating layer is successfully fabricated on the surface of Fe-PB by a liquid-phase method.The aminated PTCDA(PTCA)coating not only increases the specific surface area and electronic conductivity but also effectively reduces the crystalline water and vacancies,which avoids the erosion of Fe-PB by electrolyte.Consequently,the PTCA layer reduces the charge transfer resistance,enhances the Na-ion diffusion coefficient,and improves the structure stability.The PTCA-coated Fe-PB exhibits superior Na storage performance with a first discharge capacity of 145.2 mAh g^(−1) at 100 mA g^(−1).Long cycling tests exhibit minimal capacity decay of 0.027%per cycle over 1000 cycles at 1 A g^(−1).Therefore,this PTCA coating strategy has shown promising competence in enhancing the electrochemical performance of Fe-PB,which can potentially serve as a universal electrode coating strategy for Na-ion batteries.
文摘Since it was discovered that stress annealing induced larger anisotropies compared to other annealing methods in amorphous and nanocrystalline alloys, there has been a lot of research done to explain this phenomenon. This has led to many suggestions about the origin of this stress-induced magnetic anisotropy, but till now the origin is explained with two competing models: the magnetoelastic effect model and the diatomic pair ordering model. In spite of these theories, the origin of the stress-induced anisotropy is still under discussion because direct observation of structural anisotropy is still lacking. In this paper, we have reviewed some of the characterization techniques which have been used to discuss the origin of stress-induced magnetic anisotropy and the progress which has been made thus far in unifying all the contrasting views which has been suggested to be the origin of the stress-induced anisotropy in FINEMET alloys.
基金supported by the National High Technology Research and Development Program(“863”Program)of China(Grant No.SS2015AA042502)the National Natural Science Foundation of China(Grant No.52075047)Natural Science Foundation of Shandong Province(Grant Nos.ZR2021QE215,ZR2021QE297,and ZR2020KE051).
文摘Because of the microstructural anisotropy for laser cladding materials,the tribo-corrosion performance can vary significantly with different directions.In this study,one certain Fe-based coating was fabricated by laser cladding.To study the effects of anisotropy,three working surfaces(0°,45°,and 90°to the building direction)were machined from the laser cladding samples;as-cast samples with an approximately homogeneous structure were prepared as controls.The tribo-corrosion tests were conducted in a 3.5 wt%NaCl solution with varying normal loads(5,10,and 15 N).The results demonstrated that the 45°surface has superior friction stability,corrosion resistance,and wear resistance.This was directly related to the crystal orientation and grain boundary density.In addition,a refined microstructure may enhance tribo-corrosion properties by increasing deformation resistance and decreasing surface activity.