Corn is a high starchy cereal crop with the highest production and provides over 85%of the starch produced worldwide.Various by-products,differentiated by technological process features such as steep liquor,corn germ,...Corn is a high starchy cereal crop with the highest production and provides over 85%of the starch produced worldwide.Various by-products,differentiated by technological process features such as steep liquor,corn germ,corn bran,gluten,are created largely during corn starch processing.They are inexpensive,nutrient-rich,and vary widely in chemical composition such as proteins,oils,carbohydrates,and minerals.In an increasingly resource-constrained modern world,the utilization approach of these by-products for non-starch industrial processing is attractive widely considering both nutritive value and economic aspects.In fact,at present,applications of these by-products can often be found in feed,fermentation,nutrient extraction and other industries.For example,protein-rich corn gluten can be used as a good animal feed,and corn germ can be used as a raw material for the high-quality edible oil industry.Undoubtedly,increasing utilization means that these by-products will no longer be treated as waste but will be transformed into high value-added products.In this work,the separation process and chemical composition of several main by-products of the corn starch industry is briefly described,and the application in many industrial fields of these by-products over the last ten years are discussed in particular.This review attempts to summarize all aspects of the application and research of these by-products.For the by-products of the corn starch industry,the most promising way is to be utilized in high value and used to produce high value-added products.According to the characteristics of their chemical composition,they have a better application prospect and research significance in the industries directly related to human beings,such as medicine,green food and health care products.In fact,in recent years,some researchers have recognized this and carried out the research.It is clear fromthese studies that the main issues to be faced nowand in the future are how to produce efficiently while maintaining the quality of the product and using it effectively.The retrospective discussions also provide some ideas for other grain and oilseed crops to be fully utilized.展开更多
Sesame seeds are promulgated as traditional high-quality edible oil crops,rich in lipid(40–65%),protein(19–35%),and bioactive compounds.The review starts with bioactive components(fatty acid,tocopherol,phytosterol,s...Sesame seeds are promulgated as traditional high-quality edible oil crops,rich in lipid(40–65%),protein(19–35%),and bioactive compounds.The review starts with bioactive components(fatty acid,tocopherol,phytosterol,sesamin,sesamolin,and sesamol)of sesame seeds.It considers processing techniques for extracting oil(aqueous extraction and pressing)from seeds.Novel technologies,such as enzyme-assisted aqueous,supercritical CO_(2),and microwave-assisted solvent extraction,are also discussed.The methods of utilization of sesame seed cake are also analyzed.In the future,the processing technology of sesame seed will be further developed in the direction of improving comprehensive utilization rate to meet new consumption demand.展开更多
基金The authors gratefully acknowledge the financial support provided by the Doctor Research Fund of Henan University of Technology(2020BS009)Science,Technology and Innovation in the Soybean and its Alternative Crops Chain(SQ2019YFD100114).
文摘Corn is a high starchy cereal crop with the highest production and provides over 85%of the starch produced worldwide.Various by-products,differentiated by technological process features such as steep liquor,corn germ,corn bran,gluten,are created largely during corn starch processing.They are inexpensive,nutrient-rich,and vary widely in chemical composition such as proteins,oils,carbohydrates,and minerals.In an increasingly resource-constrained modern world,the utilization approach of these by-products for non-starch industrial processing is attractive widely considering both nutritive value and economic aspects.In fact,at present,applications of these by-products can often be found in feed,fermentation,nutrient extraction and other industries.For example,protein-rich corn gluten can be used as a good animal feed,and corn germ can be used as a raw material for the high-quality edible oil industry.Undoubtedly,increasing utilization means that these by-products will no longer be treated as waste but will be transformed into high value-added products.In this work,the separation process and chemical composition of several main by-products of the corn starch industry is briefly described,and the application in many industrial fields of these by-products over the last ten years are discussed in particular.This review attempts to summarize all aspects of the application and research of these by-products.For the by-products of the corn starch industry,the most promising way is to be utilized in high value and used to produce high value-added products.According to the characteristics of their chemical composition,they have a better application prospect and research significance in the industries directly related to human beings,such as medicine,green food and health care products.In fact,in recent years,some researchers have recognized this and carried out the research.It is clear fromthese studies that the main issues to be faced nowand in the future are how to produce efficiently while maintaining the quality of the product and using it effectively.The retrospective discussions also provide some ideas for other grain and oilseed crops to be fully utilized.
基金The Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2016-OCRI)Wuhan Scientific and Technical Payoffs Transformation Project(2019030703011505)Earmarked Fund for China Agriculture Research System(CARS-14).
文摘Sesame seeds are promulgated as traditional high-quality edible oil crops,rich in lipid(40–65%),protein(19–35%),and bioactive compounds.The review starts with bioactive components(fatty acid,tocopherol,phytosterol,sesamin,sesamolin,and sesamol)of sesame seeds.It considers processing techniques for extracting oil(aqueous extraction and pressing)from seeds.Novel technologies,such as enzyme-assisted aqueous,supercritical CO_(2),and microwave-assisted solvent extraction,are also discussed.The methods of utilization of sesame seed cake are also analyzed.In the future,the processing technology of sesame seed will be further developed in the direction of improving comprehensive utilization rate to meet new consumption demand.