The microstructures and crystal growth directions of permanent mould casting and directionally solidified Al-Mg al oys with different Mg contents have been investigated. The results indicate that the effect of Mg cont...The microstructures and crystal growth directions of permanent mould casting and directionally solidified Al-Mg al oys with different Mg contents have been investigated. The results indicate that the effect of Mg content on microstructure is basical y same for the al oys prepared by these two methods. The primary grains change from cel ular crystals to developed columnar dendrites, and then to equiaxed dendrites as the Mg content is increased. Simultaneously, both the cel ular or columnar grain region and the primary trunk spacing decrease. Al of these changes are mainly attributed to the constitutional supercooling resulting from Mg element. Comparatively, the cellular or columnar crystals of the directionally solidified alloys are straighter and more paral el than those of the permanent mould casting al oys. These have straight or wavy grain boundaries, one of the most important microstructure characteristics of feathery grains. However, the transverse microstructure and growth direction reveal that they do not belong to feathery grains. The Mg seemingly can affect the crystal growth direction, but does not result in the formation of feathery grains under the conditions employed in the study.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51061010)the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0023)the Program for Hongliu Outstanding Talents of Lanzhou University of Technology
文摘The microstructures and crystal growth directions of permanent mould casting and directionally solidified Al-Mg al oys with different Mg contents have been investigated. The results indicate that the effect of Mg content on microstructure is basical y same for the al oys prepared by these two methods. The primary grains change from cel ular crystals to developed columnar dendrites, and then to equiaxed dendrites as the Mg content is increased. Simultaneously, both the cel ular or columnar grain region and the primary trunk spacing decrease. Al of these changes are mainly attributed to the constitutional supercooling resulting from Mg element. Comparatively, the cellular or columnar crystals of the directionally solidified alloys are straighter and more paral el than those of the permanent mould casting al oys. These have straight or wavy grain boundaries, one of the most important microstructure characteristics of feathery grains. However, the transverse microstructure and growth direction reveal that they do not belong to feathery grains. The Mg seemingly can affect the crystal growth direction, but does not result in the formation of feathery grains under the conditions employed in the study.