Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown a...Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters.展开更多
The tool for analyzing and evaluating system characteristics based on the AADL model can achieve real-time,reliability,security,and schedulability analysis and evaluation for software-intensive systems.It provides a c...The tool for analyzing and evaluating system characteristics based on the AADL model can achieve real-time,reliability,security,and schedulability analysis and evaluation for software-intensive systems.It provides a complete solution for quality analysis of real-time,reliability,safety,and schedulability in the design and demonstration stages of software-intensive systems.By using the system′s multi-characteristic(real-time capability,reliability,safety,schedulability)analysis and evaluation tool based on AADL models,it can meet the software non-functional requirements stipulated by the existing model development standards and specifications.This effectively enhances the efficiency of demonstrating the compliance of the system′s non-functional quality attributes in the design work of our unit′s software-intensive system.It can also improve the performance of our unit′s software-intensive system in engineering inspections and requirement reviews conducted by various organizations.The improvement in the quality level of software-intensive systems can enhance the market competitiveness of our unit′s electronic products.展开更多
As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their characte...As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their character in real-time.Humans incorporate physiological attributes like a fingerprint,face,iris,palm print,finger knuckle print,Deoxyribonucleic Acid(DNA),and behavioral qualities like walk,voice,mark,or keystroke.The main goal of this paper is to design a robust framework for automatic face recognition.Scale Invariant Feature Transform(SIFT)and Speeded-up Robust Features(SURF)are employed for face recognition.Also,we propose a modified Gabor Wavelet Transform for SIFT/SURF(GWT-SIFT/GWT-SURF)to increase the recognition accuracy of human faces.The proposed scheme is composed of three steps.First,the entropy of the image is removed using Discrete Wavelet Transform(DWT).Second,the computational complexity of the SIFT/SURF is reduced.Third,the accuracy is increased for authentication by the proposed GWT-SIFT/GWT-SURF algorithm.A comparative analysis of the proposed scheme is done on real-time Olivetti Research Laboratory(ORL)and Poznan University of Technology(PUT)databases.When compared to the traditional SIFT/SURF methods,we verify that the GWT-SIFT achieves the better accuracy of 99.32%and the better approach is the GWT-SURF as the run time of the GWT-SURF for 100 images is 3.4 seconds when compared to the GWT-SIFT which has a run time of 4.9 seconds for 100 images.展开更多
[ Objective] The research aimed to analyze characteristics of the atmospheric particulate pollutants ( PMlo and PM2.s) in Wenzhou City. [Method] We analyzed interannual change rule of the dust haze in Wenzhou during...[ Objective] The research aimed to analyze characteristics of the atmospheric particulate pollutants ( PMlo and PM2.s) in Wenzhou City. [Method] We analyzed interannual change rule of the dust haze in Wenzhou during 1978 -2008. Moreover, we respectively set monitoring points in urban district, industrial park and beauty spot of Wenzhou in summer and winter of 2010. Element, ion and polycyclic aromatic hydrocarbon com- positions and morphology of the particulate matter were analyzed. [ Result] Dust haze in Wenzhou City mainly appeared in winter and spring, which was related to local meteorological condition. In summer and winter, both PMlo and PM2.s concentrations presented the characteristic of industrial park 〉 commercial area 〉 beauty spot. Chain-like particle aggregates and ultrafine particles were main composition of the atmospheric particulate matter in Wenzhou. Contribution rate of the spherical particle amount was smaller than metropolis, which was related to local industry and traffic. Fe element had the most content in particulate matter. Mass concentration was mainly composed of 6 elements, such as Na, Si, S, K, Ca and Fe. Total concentration of the six elements occupied 70% -80% of the 16 elements. SO^- and NH4* in particulate matter were higher. They were mainly from human activity. Main compositions of the polycyclic aromatic hydrocarbon were naphthalene, anthracene, benzo (b) fluoranthene, indeno (1,2, 3-cd) pyrene and benzo (g, h, i) perylene, which was related to abrupt increase of the motor vehicle. [ Condusion] The research provided scientific basis and technology support for controlling atmospheric particulate matter pollution in Wenzhou City by government and related department.展开更多
Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(...Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(ELM)and fractal feature analysis.Glaucoma is the second most frequent cause of permanent blindness in industrial展开更多
In order to develop precision or personalized medicine,identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest...In order to develop precision or personalized medicine,identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest recently.Most of these research approaches use the similar concepts of the conventional computer-aided detection schemes of medical images,which include steps in detecting and segmenting suspicious regions or tumors,followed by training machine learning models based on the fusion of multiple image features computed from the segmented regions or tumors.However,due to the heterogeneity and boundary fuzziness of the suspicious regions or tumors,segmenting subtle regions is often difficult and unreliable.Additionally,ignoring global and/or background parenchymal tissue characteristics may also be a limitation of the conventional approaches.In our recent studies,we investigated the feasibility of developing new computer-aided schemes implemented with the machine learning models that are trained by global image features to predict cancer risk and prognosis.We trained and tested several models using images obtained from full-field digital mammography,magnetic resonance imaging,and computed tomography of breast,lung,and ovarian cancers.Study results showed that many of these new models yielded higher performance than other approaches used in current clinical practice.Furthermore,the computed global image features also contain complementary information from the features computed from the segmented regions or tumors in predicting cancer prognosis.Therefore,the global image features can be used alone to develop new case-based prediction models or can be added to current tumor-based models to increase their discriminatory power.展开更多
Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in gen...Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in general,slowly varying and can be modeled by autoregressive models. However, industrial processes always show typical nonstationary nature, which may bring two challenges: how to capture fault degradation information and how to model nonstationary processes. To address the critical issues, a novel fault degradation modeling and online fault prognostic strategy is developed in this paper. First, a fault degradation-oriented slow feature analysis(FDSFA) algorithm is proposed to extract fault degradation directions along which candidate fault degradation features are extracted. The trend ability assessment is then applied to select major fault degradation features. Second, a key fault degradation factor(KFDF) is calculated to characterize the fault degradation tendency by combining major fault degradation features and their stability weighting factors. After that, a time-varying regression model with temporal smoothness regularization is established considering nonstationary characteristics. On the basis of updating strategy, an online fault prognostic model is further developed by analyzing and modeling the prediction errors. The performance of the proposed method is illustrated with a real industrial process.展开更多
Traditional sequence analysis depends on sequence alignment. In this study, we analyzed various functional regions of the human genome based on sequence features, including word frequency, dinucleotide relative abunda...Traditional sequence analysis depends on sequence alignment. In this study, we analyzed various functional regions of the human genome based on sequence features, including word frequency, dinucleotide relative abundance, and base-base correlation. We analyzed the human chromosome 22 and classified the upstream, exon, intron, downstream, and intergenic regions by principal component analysis and discriminant analysis of these features. The results show that we could classify the functional regions of genome based on sequence feature and discriminant analysis.展开更多
The safety of rail is very important for the development of high speed railway, and it is necessary to investigate the features of inner cracks in rail. In order to obtain the features of Acoustic Emission (AE) sour...The safety of rail is very important for the development of high speed railway, and it is necessary to investigate the features of inner cracks in rail. In order to obtain the features of Acoustic Emission (AE) sources of inner cracks in rail, AE sources with different types, depths and propagation distances are examined for crack in rail. The finite element method is utilized to model the rail with cracks and the results of experiment demonstrate the effectiveness of this model. Wavelet transform and Rayleigh-Lamb equations are utilized to extract the features of crack AE sources. The results illustrate that the intensity ratio among AE modes can identify the AE source types and the AE sources with different frequencies in rail. There are uniform AE mode features existing in the AE signals from AE sources in rail web, however AE signals from AE sources in rail head and rail base have the complex and unstable AE modes. Different AE source types have the different propagation features in rail. It is helpful to understand the rail cracks and detect the rail cracks based on the AE technique.展开更多
The purpose of this study is to establish the simulation model of the gas emboli by analyzing reasons for features of gas emboli Doppler ultrasound signals. It is useful for the further classification of the solid emb...The purpose of this study is to establish the simulation model of the gas emboli by analyzing reasons for features of gas emboli Doppler ultrasound signals. It is useful for the further classification of the solid emboli and gas emboli. First, the model of the radiation force and the drag force is used to calculate forces acting on the gas emboli. Second, the acceleration of the gas emboli is calculated in both the radial direction and the axial direction of the vessel, which is used to calculate the trajectory of the gas emboli in the vessel. Finally, the computer simulation model is established for the gas emboli. Doppler ultrasound signals of the gas emboli and the solid emboli are generated in the simulation experiment. Experimental results show that compared with the solid emboli, the gas emboli acted by the radiation force and the drag force will result in the frequency-domain broaden in the Doppler spectrogram. When the gas emboli circulate from the low speed area to the high speed one and then from the high speed area back to the low speed one, a "V" shape will be shown in the spectrogram of gas emboli signals. When the gas emboli circulate from the low speed area to the high speed one or from the high speed area to the low speed one, a diagonal shape will be shown for gas emboli signals. It is also shown that features of simulated gas emboli signals match with those of gas emboli signals sampled from clinic. All demonstrate that the simulation method of the gas emboli is reasonable.展开更多
Analysis of customers' satisfaction provides a guarantee to improve the service quality in call centers.In this paper,a novel satisfaction recognition framework is introduced to analyze the customers' satisfaction.I...Analysis of customers' satisfaction provides a guarantee to improve the service quality in call centers.In this paper,a novel satisfaction recognition framework is introduced to analyze the customers' satisfaction.In natural conversations,the interaction between a customer and its agent take place more than once.One of the difficulties insatisfaction analysis at call centers is that not all conversation turns exhibit customer satisfaction or dissatisfaction. To solve this problem,an intelligent system is proposed that utilizes acoustic features to recognize customers' emotion and utilizes the global features of emotion and duration to analyze the satisfaction. Experiments on real-call data show that the proposed system offers a significantly higher accuracy in analyzing the satisfaction than the baseline system. The average F value is improved to 0. 701 from 0. 664.展开更多
In this paper, three types of weld flaw were taken as target, evaluation and recognition of flaw echo features were studied. On the basis of experimental study and theoretical analysis, 26 features have been extracted...In this paper, three types of weld flaw were taken as target, evaluation and recognition of flaw echo features were studied. On the basis of experimental study and theoretical analysis, 26 features have been extracted from each echo samples. A method which is based on the xtatislical hypothesis testing and used for feature evaluation and optimum subset selection was explored. Thus, the dimensionality reduction of feature space was brought out, and simultaneously the amount of calculation was decreased. An intelligent pattern classifier with B-P type neural network was constructed which was characterized by high speed and accuracy for learning. Using a half of total samples as training set and others as testing set, the learning efficiency and the classification ability of network model were studied. The results of experiment showed that the learning rate of different training samples was about 100%. The results of recognition was satisfactory when the optimum feature subset was taken as the sample's feature vectors. The average recognition rate of three type flaws was about 87.6%, and the best recognition rate amounted to 97%.展开更多
Based on the precipitation data of all counties in Guilin from 1957 to 2010, the analysis has been made on the features of spatial and temporal distribution, the probability of occurrence and the periodic change of dr...Based on the precipitation data of all counties in Guilin from 1957 to 2010, the analysis has been made on the features of spatial and temporal distribution, the probability of occurrence and the periodic change of drought in Guilin. Afterwards, by using the method of disaster risk assessment, the disaster-causing factors, breed disasters environment and fragility of hazard-bearing body of Guilin drought have been analyzed, and the comprehensive evaluation on drought disaster has been made. The results show that above medium drought in Guilin mainly appeared in au- tumn, followed by winter, while Guilin only suffered from slight drought in spring; the principal period of drought occurrence in Guilin was six years, while its secondary period was two years; on the whole, drought risk was high in the southeast and low in the northwest.展开更多
Analysis of cellular behavior is significant for studying cell cycle and detecting anti-cancer drugs. It is a very difficult task for image processing to isolate individual cells in confocal microscopic images of non-...Analysis of cellular behavior is significant for studying cell cycle and detecting anti-cancer drugs. It is a very difficult task for image processing to isolate individual cells in confocal microscopic images of non-stained live cell cultures. Because these images do not have adequate textural variations. Manual cell segmentation requires massive labor and is a time consuming process. This paper describes an automated cell segmentation method for localizing the cells of Chinese hamster ovary cell culture. Several kinds of high-dimensional feature descriptors, K-means clustering method and Chan-Vese model-based level set are used to extract the cellular regions. The region extracted are used to classify phases in cell cycle. The segmentation results were experimentally assessed. As a result, the proposed method proved to be significant for cell isolation. In the evaluation experiments, we constructed a database of Chinese Hamster Ovary Cell’s microscopic images which includes various photographing environments under the guidance of a biologist.展开更多
The unique topography and historical and cultural background have determined the diversity and uniqueness of kiln architecture in the Tongchuan area.In addition to the double-slope residential architecture,traditional...The unique topography and historical and cultural background have determined the diversity and uniqueness of kiln architecture in the Tongchuan area.In addition to the double-slope residential architecture,traditional kiln dwellings with regional characteristics such as Leaning on the cliff cave dwelling,ground Pit cave dwelling and Freestanding cave dwellings have also been formed.This paper takes the inheritance and protection of traditional kiln as the starting point,and through field research and literature analysis,we have systematically collected images,measured data,and drawn up horizontal and vertical profiles and three-dimensional structure drawings of the traditional kiln dwellings in Tongchuan,and concluded the three types of forms and structural characteristics and artistic form characteristics of the traditional kiln dwellings in Tongchuan.The aim is to provide a basis and reference for the protection and inheritance of tangible and intangible cultural heritage in Shaanxi,as well as for subsequent research in this field.展开更多
Video data are composed of multimodal information streams including visual, auditory and textual streams, so an approach of story segmentation for news video using multimodal analysis is described in this paper. The p...Video data are composed of multimodal information streams including visual, auditory and textual streams, so an approach of story segmentation for news video using multimodal analysis is described in this paper. The proposed approach detects the topic-caption frames, and integrates them with silence clips detection results, as well as shot segmentation results to locate the news story boundaries. The integration of audio-visual features and text information overcomes the weakness of the approach using only image analysis techniques. On test data with 135 400 frames, when the boundaries between news stories are detected, the accuracy rate 85.8% and the recall rate 97.5% are obtained. The experimental results show the approach is valid and robust.展开更多
Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) a...Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.展开更多
The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature informa...The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature information, and to provide effective approach for nonlinear signal analysis and fault diagnosis of nonlinear dynamic system. Now, it has already formed an important offset of nonlinear science. But, traditional method cannot extract chaos features automatically, and it needs man's participation in the whole process. A new method is put forward, which can implement auto-extracting of chaos features for nonlinear time series. Firstly, to confirm time delay r by autocorrelation method; Secondly, to compute embedded dimension m and correlation dimension D; Thirdly, to compute the maximum Lyapunov index λmax; Finally, to calculate the chaos degree Dch of Poincare map, and the non-circle degree Dnc and non-order degree Dno of quasi-phase orbit. Chaos features extracting has important meaning to fault diagnosis of nonlinear system based on nonlinear chaos features. Examples show validity of the proposed method.展开更多
In this study, we analyzed the gravity and, magnetic characteristics, and the occurrence of a fault zone and discussed the relationships between the two locations. The results reveal that the subsurface structures str...In this study, we analyzed the gravity and, magnetic characteristics, and the occurrence of a fault zone and discussed the relationships between the two locations. The results reveal that the subsurface structures strikes are different compared with those in the research region. In other words, the geophysical advantageous directions from the gravity and magnetic anomalies are not the same as those caused by the surface structures. The local horizontal gradient results from the gravity and magnetic anomalies show that the majority of earthquakes occur along an intense fault zone, which is a zone of abrupt gravity and negative magnetic change, where the shapes match very well. From the distribution of earthquakes in this area, we find that it has experienced more than 11 earthquake events with magnitude larger than Ms7.0. In addition, water development sites such as Jinshajiang, Lancangjiang, and the Red River and Pearl River watersheds have been hit ten times by earthquakes of this magnitude. It is observed that strong earthquakes occur frequently in the Holocene active fault zone.展开更多
Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke...Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines.展开更多
基金The work is supported by the Sub-Project of“Research on Key Technologies and Equipment of Reservoir Stimulation”of China National Petroleum Corporation Post–14th Five-Year Plan Forward-Looking Major Science and Technology Project“Research on New Technology of Monitoring and Diagnosis of Horizontal Well Hydraulic Fracture Network Distribution Pattern”(2021DJ4502).
文摘Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters.
文摘The tool for analyzing and evaluating system characteristics based on the AADL model can achieve real-time,reliability,security,and schedulability analysis and evaluation for software-intensive systems.It provides a complete solution for quality analysis of real-time,reliability,safety,and schedulability in the design and demonstration stages of software-intensive systems.By using the system′s multi-characteristic(real-time capability,reliability,safety,schedulability)analysis and evaluation tool based on AADL models,it can meet the software non-functional requirements stipulated by the existing model development standards and specifications.This effectively enhances the efficiency of demonstrating the compliance of the system′s non-functional quality attributes in the design work of our unit′s software-intensive system.It can also improve the performance of our unit′s software-intensive system in engineering inspections and requirement reviews conducted by various organizations.The improvement in the quality level of software-intensive systems can enhance the market competitiveness of our unit′s electronic products.
文摘As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their character in real-time.Humans incorporate physiological attributes like a fingerprint,face,iris,palm print,finger knuckle print,Deoxyribonucleic Acid(DNA),and behavioral qualities like walk,voice,mark,or keystroke.The main goal of this paper is to design a robust framework for automatic face recognition.Scale Invariant Feature Transform(SIFT)and Speeded-up Robust Features(SURF)are employed for face recognition.Also,we propose a modified Gabor Wavelet Transform for SIFT/SURF(GWT-SIFT/GWT-SURF)to increase the recognition accuracy of human faces.The proposed scheme is composed of three steps.First,the entropy of the image is removed using Discrete Wavelet Transform(DWT).Second,the computational complexity of the SIFT/SURF is reduced.Third,the accuracy is increased for authentication by the proposed GWT-SIFT/GWT-SURF algorithm.A comparative analysis of the proposed scheme is done on real-time Olivetti Research Laboratory(ORL)and Poznan University of Technology(PUT)databases.When compared to the traditional SIFT/SURF methods,we verify that the GWT-SIFT achieves the better accuracy of 99.32%and the better approach is the GWT-SURF as the run time of the GWT-SURF for 100 images is 3.4 seconds when compared to the GWT-SIFT which has a run time of 4.9 seconds for 100 images.
基金Supported by Study on Formation Reason and Early Warning of the Dust Haze and Atmospheric Complex Pollution Control in Wenzhou City ( R20090124)
文摘[ Objective] The research aimed to analyze characteristics of the atmospheric particulate pollutants ( PMlo and PM2.s) in Wenzhou City. [Method] We analyzed interannual change rule of the dust haze in Wenzhou during 1978 -2008. Moreover, we respectively set monitoring points in urban district, industrial park and beauty spot of Wenzhou in summer and winter of 2010. Element, ion and polycyclic aromatic hydrocarbon com- positions and morphology of the particulate matter were analyzed. [ Result] Dust haze in Wenzhou City mainly appeared in winter and spring, which was related to local meteorological condition. In summer and winter, both PMlo and PM2.s concentrations presented the characteristic of industrial park 〉 commercial area 〉 beauty spot. Chain-like particle aggregates and ultrafine particles were main composition of the atmospheric particulate matter in Wenzhou. Contribution rate of the spherical particle amount was smaller than metropolis, which was related to local industry and traffic. Fe element had the most content in particulate matter. Mass concentration was mainly composed of 6 elements, such as Na, Si, S, K, Ca and Fe. Total concentration of the six elements occupied 70% -80% of the 16 elements. SO^- and NH4* in particulate matter were higher. They were mainly from human activity. Main compositions of the polycyclic aromatic hydrocarbon were naphthalene, anthracene, benzo (b) fluoranthene, indeno (1,2, 3-cd) pyrene and benzo (g, h, i) perylene, which was related to abrupt increase of the motor vehicle. [ Condusion] The research provided scientific basis and technology support for controlling atmospheric particulate matter pollution in Wenzhou City by government and related department.
文摘Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(ELM)and fractal feature analysis.Glaucoma is the second most frequent cause of permanent blindness in industrial
基金The studies mentioned in this paper were supported in part by Grants R01 CA160205 and R01 CA197150 from the National Cancer Institute,National Institutes of Health,USAGrant HR15-016 from Oklahoma Center for the Advancement of Science and Technology,USA.
文摘In order to develop precision or personalized medicine,identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest recently.Most of these research approaches use the similar concepts of the conventional computer-aided detection schemes of medical images,which include steps in detecting and segmenting suspicious regions or tumors,followed by training machine learning models based on the fusion of multiple image features computed from the segmented regions or tumors.However,due to the heterogeneity and boundary fuzziness of the suspicious regions or tumors,segmenting subtle regions is often difficult and unreliable.Additionally,ignoring global and/or background parenchymal tissue characteristics may also be a limitation of the conventional approaches.In our recent studies,we investigated the feasibility of developing new computer-aided schemes implemented with the machine learning models that are trained by global image features to predict cancer risk and prognosis.We trained and tested several models using images obtained from full-field digital mammography,magnetic resonance imaging,and computed tomography of breast,lung,and ovarian cancers.Study results showed that many of these new models yielded higher performance than other approaches used in current clinical practice.Furthermore,the computed global image features also contain complementary information from the features computed from the segmented regions or tumors in predicting cancer prognosis.Therefore,the global image features can be used alone to develop new case-based prediction models or can be added to current tumor-based models to increase their discriminatory power.
基金Project(U1709211) supported by NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization,ChinaProject(ICT2021A15) supported by the State Key Laboratory of Industrial Control Technology,Zhejiang University,ChinaProject(TPL2019C03) supported by Open Fund of Science and Technology on Thermal Energy and Power Laboratory,China。
文摘Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in general,slowly varying and can be modeled by autoregressive models. However, industrial processes always show typical nonstationary nature, which may bring two challenges: how to capture fault degradation information and how to model nonstationary processes. To address the critical issues, a novel fault degradation modeling and online fault prognostic strategy is developed in this paper. First, a fault degradation-oriented slow feature analysis(FDSFA) algorithm is proposed to extract fault degradation directions along which candidate fault degradation features are extracted. The trend ability assessment is then applied to select major fault degradation features. Second, a key fault degradation factor(KFDF) is calculated to characterize the fault degradation tendency by combining major fault degradation features and their stability weighting factors. After that, a time-varying regression model with temporal smoothness regularization is established considering nonstationary characteristics. On the basis of updating strategy, an online fault prognostic model is further developed by analyzing and modeling the prediction errors. The performance of the proposed method is illustrated with a real industrial process.
基金supported by the National High—Tech Research and Development Program(863 Program)of China(No.2002AA231071)the Natural Science Foundation of Jiangsu Province(No.BK2002057).
文摘Traditional sequence analysis depends on sequence alignment. In this study, we analyzed various functional regions of the human genome based on sequence features, including word frequency, dinucleotide relative abundance, and base-base correlation. We analyzed the human chromosome 22 and classified the upstream, exon, intron, downstream, and intergenic regions by principal component analysis and discriminant analysis of these features. The results show that we could classify the functional regions of genome based on sequence feature and discriminant analysis.
基金supported by the China Scholarship Council,the National Natural Science Foundation of China(61171197,61201307,61371045)the Innovation Funds of Harbin Institute of Technology(Grant IDGA18102011)the Promotive Research Fund for Excellent Young and Middle-Aged Scientisits of Shandong Province(BS2010DX001)
文摘The safety of rail is very important for the development of high speed railway, and it is necessary to investigate the features of inner cracks in rail. In order to obtain the features of Acoustic Emission (AE) sources of inner cracks in rail, AE sources with different types, depths and propagation distances are examined for crack in rail. The finite element method is utilized to model the rail with cracks and the results of experiment demonstrate the effectiveness of this model. Wavelet transform and Rayleigh-Lamb equations are utilized to extract the features of crack AE sources. The results illustrate that the intensity ratio among AE modes can identify the AE source types and the AE sources with different frequencies in rail. There are uniform AE mode features existing in the AE signals from AE sources in rail web, however AE signals from AE sources in rail head and rail base have the complex and unstable AE modes. Different AE source types have the different propagation features in rail. It is helpful to understand the rail cracks and detect the rail cracks based on the AE technique.
基金supported by the Natural Science Foundation of China(10974035)the Program of Shanghai Subject Chief Scientist(10XD1400600)
文摘The purpose of this study is to establish the simulation model of the gas emboli by analyzing reasons for features of gas emboli Doppler ultrasound signals. It is useful for the further classification of the solid emboli and gas emboli. First, the model of the radiation force and the drag force is used to calculate forces acting on the gas emboli. Second, the acceleration of the gas emboli is calculated in both the radial direction and the axial direction of the vessel, which is used to calculate the trajectory of the gas emboli in the vessel. Finally, the computer simulation model is established for the gas emboli. Doppler ultrasound signals of the gas emboli and the solid emboli are generated in the simulation experiment. Experimental results show that compared with the solid emboli, the gas emboli acted by the radiation force and the drag force will result in the frequency-domain broaden in the Doppler spectrogram. When the gas emboli circulate from the low speed area to the high speed one and then from the high speed area back to the low speed one, a "V" shape will be shown in the spectrogram of gas emboli signals. When the gas emboli circulate from the low speed area to the high speed one or from the high speed area to the low speed one, a diagonal shape will be shown for gas emboli signals. It is also shown that features of simulated gas emboli signals match with those of gas emboli signals sampled from clinic. All demonstrate that the simulation method of the gas emboli is reasonable.
基金Supported by the National Natural Science Foundation of China(61473041,61571044,11590772)
文摘Analysis of customers' satisfaction provides a guarantee to improve the service quality in call centers.In this paper,a novel satisfaction recognition framework is introduced to analyze the customers' satisfaction.In natural conversations,the interaction between a customer and its agent take place more than once.One of the difficulties insatisfaction analysis at call centers is that not all conversation turns exhibit customer satisfaction or dissatisfaction. To solve this problem,an intelligent system is proposed that utilizes acoustic features to recognize customers' emotion and utilizes the global features of emotion and duration to analyze the satisfaction. Experiments on real-call data show that the proposed system offers a significantly higher accuracy in analyzing the satisfaction than the baseline system. The average F value is improved to 0. 701 from 0. 664.
文摘In this paper, three types of weld flaw were taken as target, evaluation and recognition of flaw echo features were studied. On the basis of experimental study and theoretical analysis, 26 features have been extracted from each echo samples. A method which is based on the xtatislical hypothesis testing and used for feature evaluation and optimum subset selection was explored. Thus, the dimensionality reduction of feature space was brought out, and simultaneously the amount of calculation was decreased. An intelligent pattern classifier with B-P type neural network was constructed which was characterized by high speed and accuracy for learning. Using a half of total samples as training set and others as testing set, the learning efficiency and the classification ability of network model were studied. The results of experiment showed that the learning rate of different training samples was about 100%. The results of recognition was satisfactory when the optimum feature subset was taken as the sample's feature vectors. The average recognition rate of three type flaws was about 87.6%, and the best recognition rate amounted to 97%.
基金Supported by the Key Project of Guangxi Meteorological Bureau " Agricultural Weather Service Platform of Guangxi at the City or County Level" (201101)
文摘Based on the precipitation data of all counties in Guilin from 1957 to 2010, the analysis has been made on the features of spatial and temporal distribution, the probability of occurrence and the periodic change of drought in Guilin. Afterwards, by using the method of disaster risk assessment, the disaster-causing factors, breed disasters environment and fragility of hazard-bearing body of Guilin drought have been analyzed, and the comprehensive evaluation on drought disaster has been made. The results show that above medium drought in Guilin mainly appeared in au- tumn, followed by winter, while Guilin only suffered from slight drought in spring; the principal period of drought occurrence in Guilin was six years, while its secondary period was two years; on the whole, drought risk was high in the southeast and low in the northwest.
文摘Analysis of cellular behavior is significant for studying cell cycle and detecting anti-cancer drugs. It is a very difficult task for image processing to isolate individual cells in confocal microscopic images of non-stained live cell cultures. Because these images do not have adequate textural variations. Manual cell segmentation requires massive labor and is a time consuming process. This paper describes an automated cell segmentation method for localizing the cells of Chinese hamster ovary cell culture. Several kinds of high-dimensional feature descriptors, K-means clustering method and Chan-Vese model-based level set are used to extract the cellular regions. The region extracted are used to classify phases in cell cycle. The segmentation results were experimentally assessed. As a result, the proposed method proved to be significant for cell isolation. In the evaluation experiments, we constructed a database of Chinese Hamster Ovary Cell’s microscopic images which includes various photographing environments under the guidance of a biologist.
基金National Social Science Foundation of the Arts Key Project“Research on the Architecture Art and Folk Culture of Chinese Traditional Houses on the Land‘Silk Road’(Number:18AH008)”One of the Periodic Achievements of the Project Entrusted by the Ministry of Culture and Tourism:“Yellow River Culture and Chinese Civilization:Rescue Research on Shaanxi Traditional Residential Buildings and Residential Folk Culture”(Project Approval No.21HH02).
文摘The unique topography and historical and cultural background have determined the diversity and uniqueness of kiln architecture in the Tongchuan area.In addition to the double-slope residential architecture,traditional kiln dwellings with regional characteristics such as Leaning on the cliff cave dwelling,ground Pit cave dwelling and Freestanding cave dwellings have also been formed.This paper takes the inheritance and protection of traditional kiln as the starting point,and through field research and literature analysis,we have systematically collected images,measured data,and drawn up horizontal and vertical profiles and three-dimensional structure drawings of the traditional kiln dwellings in Tongchuan,and concluded the three types of forms and structural characteristics and artistic form characteristics of the traditional kiln dwellings in Tongchuan.The aim is to provide a basis and reference for the protection and inheritance of tangible and intangible cultural heritage in Shaanxi,as well as for subsequent research in this field.
文摘Video data are composed of multimodal information streams including visual, auditory and textual streams, so an approach of story segmentation for news video using multimodal analysis is described in this paper. The proposed approach detects the topic-caption frames, and integrates them with silence clips detection results, as well as shot segmentation results to locate the news story boundaries. The integration of audio-visual features and text information overcomes the weakness of the approach using only image analysis techniques. On test data with 135 400 frames, when the boundaries between news stories are detected, the accuracy rate 85.8% and the recall rate 97.5% are obtained. The experimental results show the approach is valid and robust.
基金Under the auspices of Priority Academic Program Development of Jiangsu Higher Education Institutions,National Natural Science Foundation of China(No.41271438,41471316,41401440,41671389)
文摘Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.
文摘The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature information, and to provide effective approach for nonlinear signal analysis and fault diagnosis of nonlinear dynamic system. Now, it has already formed an important offset of nonlinear science. But, traditional method cannot extract chaos features automatically, and it needs man's participation in the whole process. A new method is put forward, which can implement auto-extracting of chaos features for nonlinear time series. Firstly, to confirm time delay r by autocorrelation method; Secondly, to compute embedded dimension m and correlation dimension D; Thirdly, to compute the maximum Lyapunov index λmax; Finally, to calculate the chaos degree Dch of Poincare map, and the non-circle degree Dnc and non-order degree Dno of quasi-phase orbit. Chaos features extracting has important meaning to fault diagnosis of nonlinear system based on nonlinear chaos features. Examples show validity of the proposed method.
基金supported by the Chinese Earthquake Administration,Institute of Seismology Foundation(IS201326126)Chinese earthquake scientific array exploration northern section of North South Seismic Belt gravity profile Foundation(201308011)
文摘In this study, we analyzed the gravity and, magnetic characteristics, and the occurrence of a fault zone and discussed the relationships between the two locations. The results reveal that the subsurface structures strikes are different compared with those in the research region. In other words, the geophysical advantageous directions from the gravity and magnetic anomalies are not the same as those caused by the surface structures. The local horizontal gradient results from the gravity and magnetic anomalies show that the majority of earthquakes occur along an intense fault zone, which is a zone of abrupt gravity and negative magnetic change, where the shapes match very well. From the distribution of earthquakes in this area, we find that it has experienced more than 11 earthquake events with magnitude larger than Ms7.0. In addition, water development sites such as Jinshajiang, Lancangjiang, and the Red River and Pearl River watersheds have been hit ten times by earthquakes of this magnitude. It is observed that strong earthquakes occur frequently in the Holocene active fault zone.
基金supported by National Natural Science Foundation under Grant No.50875247Shanxi Province Natural Science Foundation under Grant No.2009011026-1
文摘Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines.