This paper presents a feature modeling approach to address the 3D structural topology design optimization withfeature constraints. In the proposed algorithm, various features are formed into searchable shape features ...This paper presents a feature modeling approach to address the 3D structural topology design optimization withfeature constraints. In the proposed algorithm, various features are formed into searchable shape features bythe feature modeling technology, and the models of feature elements are established. The feature elements thatmeet the design requirements are found by employing a feature matching technology, and the constraint factorscombined with the pseudo density of elements are initialized according to the optimized feature elements. Then,through controlling the constraint factors and utilizing the optimization criterion method along with the filteringtechnology of independent mesh, the structural design optimization is implemented. The present feature modelingapproach is applied to the feature-based structural topology optimization using empirical data. Meanwhile, theimproved mathematical model based on the density method with the constraint factors and the correspondingsolution processes are also presented. Compared with the traditional method which requires complicated constraintprocessing, the present approach is flexibly applied to the 3D structural design optimization with added holesby changing the constraint factors, thus it can design a structure with predetermined features more directly andeasily. Numerical examples show effectiveness of the proposed feature modeling approach, which is suitable for thepractical engineering design.展开更多
Example-based super-resolution algorithms,which predict unknown high-resolution image information using a relationship model learnt from known high- and low-resolution image pairs, have attracted considerable interest...Example-based super-resolution algorithms,which predict unknown high-resolution image information using a relationship model learnt from known high- and low-resolution image pairs, have attracted considerable interest in the field of image processing. In this paper, we propose a multi-example feature-constrained back-projection method for image super-resolution. Firstly, we take advantage of a feature-constrained polynomial interpolation method to enlarge the low-resolution image. Next, we consider low-frequency images of different resolutions to provide an example pair. Then, we use adaptive k NN search to find similar patches in the low-resolution image for every image patch in the high-resolution low-frequency image, leading to a regression model between similar patches to be learnt. The learnt model is applied to the low-resolution high-frequency image to produce high-resolution high-frequency information. An iterative back-projection algorithm is used as the final step to determine the final high-resolution image.Experimental results demonstrate that our method improves the visual quality of the high-resolution image.展开更多
基金This work is supported by the National Natural Science Foundation of China(12002218)the Youth Foundation of Education Department of Liaoning Province(JYT19034).These supports are gratefully acknowledged.
文摘This paper presents a feature modeling approach to address the 3D structural topology design optimization withfeature constraints. In the proposed algorithm, various features are formed into searchable shape features bythe feature modeling technology, and the models of feature elements are established. The feature elements thatmeet the design requirements are found by employing a feature matching technology, and the constraint factorscombined with the pseudo density of elements are initialized according to the optimized feature elements. Then,through controlling the constraint factors and utilizing the optimization criterion method along with the filteringtechnology of independent mesh, the structural design optimization is implemented. The present feature modelingapproach is applied to the feature-based structural topology optimization using empirical data. Meanwhile, theimproved mathematical model based on the density method with the constraint factors and the correspondingsolution processes are also presented. Compared with the traditional method which requires complicated constraintprocessing, the present approach is flexibly applied to the 3D structural design optimization with added holesby changing the constraint factors, thus it can design a structure with predetermined features more directly andeasily. Numerical examples show effectiveness of the proposed feature modeling approach, which is suitable for thepractical engineering design.
基金supported by the National Natural Science Foundation of China(Grant Nos.61572292,61332015,61373078,and 61272430)the National Research Foundation for the Doctoral Program of Higher Education of China(Grant No.20110131130004)
文摘Example-based super-resolution algorithms,which predict unknown high-resolution image information using a relationship model learnt from known high- and low-resolution image pairs, have attracted considerable interest in the field of image processing. In this paper, we propose a multi-example feature-constrained back-projection method for image super-resolution. Firstly, we take advantage of a feature-constrained polynomial interpolation method to enlarge the low-resolution image. Next, we consider low-frequency images of different resolutions to provide an example pair. Then, we use adaptive k NN search to find similar patches in the low-resolution image for every image patch in the high-resolution low-frequency image, leading to a regression model between similar patches to be learnt. The learnt model is applied to the low-resolution high-frequency image to produce high-resolution high-frequency information. An iterative back-projection algorithm is used as the final step to determine the final high-resolution image.Experimental results demonstrate that our method improves the visual quality of the high-resolution image.