期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Selective ensemble modeling based on nonlinear frequency spectral feature extraction for predicting load parameter in ball mills 被引量:3
1
作者 汤健 柴天佑 +1 位作者 刘卓 余文 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2020-2028,共9页
Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ... Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones. 展开更多
关键词 Nonlinear latent feature extraction Kernel partial least squares Selective ensemble modeling Least squares support vector machines Material to ball volume ratio
下载PDF
2D-HIDDEN MARKOV MODEL FEATURE EXTRACTION STRATEGY OF ROTATING MACHINERY FAULT DIAGNOSIS 被引量:1
2
作者 YE Dapeng DING Qiquan WU Zhaotong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期156-158,共3页
A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tes... A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tested by the experimental data that collected from Bently rotor experiment system. The results show that this methodology is very effective to extract the feature of vibration signals in the rotor speed-up course and can be extended to other non-stationary signal analysis fields in the future. 展开更多
关键词 Fault diagnosis Rotating machinery 2D-hidden Markov model(HMM)feature extraction
下载PDF
An Intelligent Heuristic Manta-Ray Foraging Optimization and Adaptive Extreme Learning Machine for Hand Gesture Image Recognition
3
作者 Seetharam Khetavath Navalpur Chinnappan Sendhilkumar +5 位作者 Pandurangan Mukunthan Selvaganesan Jana Lakshmanan Malliga Subburayalu Gopalakrishnan Sankuru Ravi Chand Yousef Farhaoui 《Big Data Mining and Analytics》 EI CSCD 2023年第3期321-335,共15页
The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling c... The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling communication between deaf and dumb people.In conventional works,various image processing techniques like segmentation,optimization,and classification are deployed for hand gesture recognition.Still,it limits the major problems of inefficient handling of large dimensional datasets and requires more time consumption,increased false positives,error rate,and misclassification outputs.Hence,this research work intends to develop an efficient hand gesture image recognition system by using advanced image processing techniques.During image segmentation,skin color detection and morphological operations are performed for accurately segmenting the hand gesture portion.Then,the Heuristic Manta-ray Foraging Optimization(HMFO)technique is employed for optimally selecting the features by computing the best fitness value.Moreover,the reduced dimensionality of features helps to increase the accuracy of classification with a reduced error rate.Finally,an Adaptive Extreme Learning Machine(AELM)based classification technique is employed for predicting the recognition output.During results validation,various evaluation measures have been used to compare the proposed model’s performance with other classification approaches. 展开更多
关键词 hand gesture recognition skin color detection morphological operations Multifaceted feature extraction(MFE)model Heuristic Manta-ray Foraging Optimization(HMFO) Adaptive Extreme Learning Machine(AELM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部