期刊文献+
共找到20,573篇文章
< 1 2 250 >
每页显示 20 50 100
Spatial Distribution Feature Extraction Network for Open Set Recognition of Electromagnetic Signal
1
作者 Hui Zhang Huaji Zhou +1 位作者 Li Wang Feng Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期279-296,共18页
This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distri... This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors.The designed hybrid loss function considers both intra-class distance and inter-class distance,thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training.Consequently,this method allows unknown classes to occupy a larger space in the feature space.This reduces the possibility of overlap with known class samples and makes the boundaries between known and unknown samples more distinct.Additionally,the feature comparator threshold can be used to reject unknown samples.For signal open set recognition,seven methods,including the proposed method,are applied to two kinds of electromagnetic signal data:modulation signal and real-world emitter.The experimental results demonstrate that the proposed method outperforms the other six methods overall in a simulated open environment.Specifically,compared to the state-of-the-art Openmax method,the novel method achieves up to 8.87%and 5.25%higher micro-F-measures,respectively. 展开更多
关键词 Electromagnetic signal recognition deep learning feature extraction open set recognition
下载PDF
Feature extraction and learning approaches for cancellable biometrics:A survey
2
作者 Wencheng Yang Song Wang +2 位作者 Jiankun Hu Xiaohui Tao Yan Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期4-25,共22页
Biometric recognition is a widely used technology for user authentication.In the application of this technology,biometric security and recognition accuracy are two important issues that should be considered.In terms o... Biometric recognition is a widely used technology for user authentication.In the application of this technology,biometric security and recognition accuracy are two important issues that should be considered.In terms of biometric security,cancellable biometrics is an effective technique for protecting biometric data.Regarding recognition accuracy,feature representation plays a significant role in the performance and reliability of cancellable biometric systems.How to design good feature representations for cancellable biometrics is a challenging topic that has attracted a great deal of attention from the computer vision community,especially from researchers of cancellable biometrics.Feature extraction and learning in cancellable biometrics is to find suitable feature representations with a view to achieving satisfactory recognition performance,while the privacy of biometric data is protected.This survey informs the progress,trend and challenges of feature extraction and learning for cancellable biometrics,thus shedding light on the latest developments and future research of this area. 展开更多
关键词 BIOMETRICS feature extraction
下载PDF
A three-dimensional feature extraction-based method for coal cleat characterization using X-ray μCT and its application to a Bowen Basin coal specimen
3
作者 Yulai Zhang Matthew Tsang +4 位作者 Mark Knackstedt Michael Turner Shane Latham Euan Macaulay Rhys Pitchers 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期153-166,共14页
Cleats are the dominant micro-fracture network controlling the macro-mechanical behavior of coal.Improved understanding of the spatial characteristics of cleat networks is therefore important to the coal mining indust... Cleats are the dominant micro-fracture network controlling the macro-mechanical behavior of coal.Improved understanding of the spatial characteristics of cleat networks is therefore important to the coal mining industry.Discrete fracture networks(DFNs)are increasingly used in engineering analyses to spatially model fractures at various scales.The reliability of coal DFNs largely depends on the confidence in the input cleat statistics.Estimates of these parameters can be made from image-based three-dimensional(3D)characterization of coal cleats using X-ray micro-computed tomography(m CT).One key step in this process,after cleat extraction,is the separation of individual cleats,without which the cleats are a connected network and statistics for different cleat sets cannot be measured.In this paper,a feature extraction-based image processing method is introduced to identify and separate distinct cleat groups from 3D X-ray m CT images.Kernels(filters)representing explicit cleat features of coal are built and cleat separation is successfully achieved by convolutional operations on 3D coal images.The new method is applied to a coal specimen with 80 mm in diameter and 100 mm in length acquired from an Anglo American Steelmaking Coal mine in the Bowen Basin,Queensland,Australia.It is demonstrated that the new method produces reliable cleat separation capable of defining individual cleats and preserving 3D topology after separation.Bedding-parallel fractures are also identified and separated,which has his-torically been challenging to delineate and rarely reported.A variety of cleat/fracture statistics is measured which not only can quantitatively characterize the cleat/fracture system but also can be used for DFN modeling.Finally,variability and heterogeneity with respect to the core axis are investigated.Significant heterogeneity is observed and suggests that the representative elementary volume(REV)of the cleat groups for engineering purposes may be a complex problem requiring careful consideration. 展开更多
关键词 Cleat separation Cleat statistics feature extraction Discrete fracture network(DFN)modeling
下载PDF
The Influence of Air Pollution Concentrations on Solar Irradiance Forecasting Using CNN-LSTM-mRMR Feature Extraction
4
作者 Ramiz Gorkem Birdal 《Computers, Materials & Continua》 SCIE EI 2024年第3期4015-4028,共14页
Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weathe... Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network(CNN),but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions.This paper proposes a hybrid approach based on deep learning,expanding the feature set by adding new air pollution concentrations,and ranking these features to select and reduce their size to improve efficiency.In order to improve the accuracy of feature selection,a maximum-dependency and minimum-redundancy(mRMR)criterion is applied to the constructed feature space to identify and rank the features.The combination of air pollution data with weather conditions data has enabled the prediction of solar irradiance with a higher accuracy.An evaluation of the proposed approach is conducted in Istanbul over 12 months for 43791 discrete times,with the main purpose of analyzing air data,including particular matter(PM10 and PM25),carbon monoxide(CO),nitric oxide(NOX),nitrogen dioxide(NO_(2)),ozone(O₃),sulfur dioxide(SO_(2))using a CNN,a long short-term memory network(LSTM),and MRMR feature extraction.Compared with the benchmark models with root mean square error(RMSE)results of 76.2,60.3,41.3,32.4,there is a significant improvement with the RMSE result of 5.536.This hybrid model presented here offers high prediction accuracy,a wider feature set,and a novel approach based on air concentrations combined with weather conditions for solar irradiance prediction. 展开更多
关键词 Forecasting solar irradiance air pollution convolutional neural network long short-term memory network mRMR feature extraction
下载PDF
Human Ear Image Recognition Method Using PCA and Fisherface Complementary Double Feature Extraction
5
作者 Yang Wang Ke Cheng +1 位作者 Shenghui Zhao Xu E 《Journal of Artificial Intelligence and Technology》 2023年第1期18-24,共7页
Ear recognition is a new kind of biometric identification technology now.Feature extraction is a key step in pattern recognition technology,which determines the accuracy of classification results.The method of single ... Ear recognition is a new kind of biometric identification technology now.Feature extraction is a key step in pattern recognition technology,which determines the accuracy of classification results.The method of single feature extraction can achieve high recognition rate under certain conditions,but the use of double feature extraction can overcome the limitation of single feature extraction.In order to improve the accuracy of classification results,this paper proposes a new method,that is,the method of complementary double feature extraction based on Principal Component Analysis(PCA)and Fisherface,and we apply it to human ear image recognition.The experiment was carried out on the ear image library provided by the University of Science and Technology Beijing.The results show that the ear recognition rate of the proposed method is significantly higher than the single feature extraction using PCA,Fisherface,or Independent component analysis(ICA)alone. 展开更多
关键词 PCA ICA single feature extraction double feature extraction ear recognition
下载PDF
Deep Learning-Based Semantic Feature Extraction:A Literature Review and Future Directions 被引量:1
6
作者 DENG Letian ZHAO Yanru 《ZTE Communications》 2023年第2期11-17,共7页
Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications ... Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications of semantic feature extraction,a key step in the semantic communication,in several areas of artificial intelligence,including natural language processing,medical imaging,remote sensing,autonomous driving,and other image-related applications.Specifically,we discuss how semantic feature extraction can enhance the accuracy and efficiency of natural language processing tasks,such as text classification,sentiment analysis,and topic modeling.In the medical imaging field,we explore how semantic feature extraction can be used for disease diagnosis,drug development,and treatment planning.In addition,we investigate the applications of semantic feature extraction in remote sensing and autonomous driving,where it can facilitate object detection,scene understanding,and other tasks.By providing an overview of the applications of semantic feature extraction in various fields,this paper aims to provide insights into the potential of this technology to advance the development of artificial intelligence. 展开更多
关键词 semantic feature extraction semantic communication deep learning
下载PDF
Pixel-Level Feature Extraction Model for Breast Cancer Detection
7
作者 Nishant Behar Manish Shrivastava 《Computers, Materials & Continua》 SCIE EI 2023年第2期3371-3389,共19页
Breast cancer is the most prevalent cancer among women,and diagnosing it early is vital for successful treatment.The examination of images captured during biopsies plays an important role in determining whether a pati... Breast cancer is the most prevalent cancer among women,and diagnosing it early is vital for successful treatment.The examination of images captured during biopsies plays an important role in determining whether a patient has cancer or not.However,the stochastic patterns,varying intensities of colors,and the large sizes of these images make it challenging to identify and mark malignant regions in them.Against this backdrop,this study proposes an approach to the pixel categorization based on the genetic algorithm(GA)and principal component analysis(PCA).The spatial features of the images were extracted using various filters,and the most prevalent ones are selected using the GA and fed into the classifiers for pixel-level categorization.Three classifiers—random forest(RF),decision tree(DT),and extra tree(ET)—were used in the proposed model.The parameters of all modelswere separately tuned,and their performance was tested.The results show that the features extracted by using the GA+PCA in the proposed model are influential and reliable for pixel-level classification in service of the image annotation and tumor identification.Further,an image from benign,malignant,and normal classes was randomly selected and used to test the proposed model.The proposed modelGA-PCA-DT has delivered accuracies between 0.99 to 1.0 on a reduced feature set.The predicted pixel sets were also compared with their respective ground-truth values to assess the overall performance of the method on two metrics—the universal image quality index(UIQI)and the structural similarity index(SSI).Both quality measures delivered excellent results. 展开更多
关键词 Breast cancer machine learning classification feature extraction feature selection
下载PDF
Feature Extraction and Classification of Photovoltaic Panels Based on Convolutional Neural Network
8
作者 S.Prabhakaran R.Annie Uthra J.Preetharoselyn 《Computers, Materials & Continua》 SCIE EI 2023年第1期1437-1455,共19页
Photovoltaic(PV)boards are a perfect way to create eco-friendly power from daylight.The defects in the PV panels are caused by various conditions;such defective PV panels need continuous monitoring.The recent developm... Photovoltaic(PV)boards are a perfect way to create eco-friendly power from daylight.The defects in the PV panels are caused by various conditions;such defective PV panels need continuous monitoring.The recent development of PV panel monitoring systems provides a modest and viable approach to monitoring and managing the condition of the PV plants.In general,conventional procedures are used to identify the faulty modules earlier and to avoid declines in power generation.The existing deep learning architectures provide the required output to predict the faulty PV panels with less accuracy and a more time-consuming process.To increase the accuracy and to reduce the processing time,a new Convolutional Neural Network(CNN)architecture is required.Hence,in the present work,a new Real-time Multi Variant Deep learning Model(RMVDM)architecture is proposed,and it extracts the image features and classifies the defects in PV panels quickly with high accuracy.The defects that arise in the PV panels are identified by the CNN based RMVDM using RGB images.The biggest difference between CNN and its predecessors is that CNN automatically extracts the image features without any help from a person.The technique is quantitatively assessed and compared with existing faulty PV board identification approaches on the large real-time dataset.The results show that 98%of the accuracy and recall values in the fault detection and classification process. 展开更多
关键词 Photovoltaic panels deep learning DEFECT feature extraction RMVDM
下载PDF
Improved Speech Emotion Recognition Focusing on High-Level Data Representations and Swift Feature Extraction Calculation
9
作者 Akmalbek Abdusalomov Alpamis Kutlimuratov +1 位作者 Rashid Nasimov Taeg Keun Whangbo 《Computers, Materials & Continua》 SCIE EI 2023年第12期2915-2933,共19页
The performance of a speech emotion recognition(SER)system is heavily influenced by the efficacy of its feature extraction techniques.The study was designed to advance the field of SER by optimizing feature extraction... The performance of a speech emotion recognition(SER)system is heavily influenced by the efficacy of its feature extraction techniques.The study was designed to advance the field of SER by optimizing feature extraction tech-niques,specifically through the incorporation of high-resolution Mel-spectrograms and the expedited calculation of Mel Frequency Cepstral Coefficients(MFCC).This initiative aimed to refine the system’s accuracy by identifying and mitigating the shortcomings commonly found in current approaches.Ultimately,the primary objective was to elevate both the intricacy and effectiveness of our SER model,with a focus on augmenting its proficiency in the accurate identification of emotions in spoken language.The research employed a dual-strategy approach for feature extraction.Firstly,a rapid computation technique for MFCC was implemented and integrated with a Bi-LSTM layer to optimize the encoding of MFCC features.Secondly,a pretrained ResNet model was utilized in conjunction with feature Stats pooling and dense layers for the effective encoding of Mel-spectrogram attributes.These two sets of features underwent separate processing before being combined in a Convolutional Neural Network(CNN)outfitted with a dense layer,with the aim of enhancing their representational richness.The model was rigorously evaluated using two prominent databases:CMU-MOSEI and RAVDESS.Notable findings include an accuracy rate of 93.2%on the CMU-MOSEI database and 95.3%on the RAVDESS database.Such exceptional performance underscores the efficacy of this innovative approach,which not only meets but also exceeds the accuracy benchmarks established by traditional models in the field of speech emotion recognition. 展开更多
关键词 feature extraction MFCC ResNet speech emotion recognition
下载PDF
Monocular 3D object detection with Pseudo-LiDAR confidence sampling and hierarchical geometric feature extraction in 6G network
10
作者 Jianlong Zhang Guangzu Fang +3 位作者 Bin Wang Xiaobo Zhou Qingqi Pei Chen Chen 《Digital Communications and Networks》 SCIE CSCD 2023年第4期827-835,共9页
The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpow... The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpower solution compared to LiDAR solutions in the field of autonomous driving.However,this technique has some problems,i.e.,(1)the poor quality of generated Pseudo-LiDAR point clouds resulting from the nonlinear error distribution of monocular depth estimation and(2)the weak representation capability of point cloud features due to the neglected global geometric structure features of point clouds existing in LiDAR-based 3D detection networks.Therefore,we proposed a Pseudo-LiDAR confidence sampling strategy and a hierarchical geometric feature extraction module for monocular 3D object detection.We first designed a point cloud confidence sampling strategy based on a 3D Gaussian distribution to assign small confidence to the points with great error in depth estimation and filter them out according to the confidence.Then,we present a hierarchical geometric feature extraction module by aggregating the local neighborhood features and a dual transformer to capture the global geometric features in the point cloud.Finally,our detection framework is based on Point-Voxel-RCNN(PV-RCNN)with high-quality Pseudo-LiDAR and enriched geometric features as input.From the experimental results,our method achieves satisfactory results in monocular 3D object detection. 展开更多
关键词 Monocular 3D object detection Pseudo-LiDAR Confidence sampling Hierarchical geometric feature extraction
下载PDF
A Mixed Method for Feature Extraction Based on Resonance Filtering
11
作者 Xia Zhang Wei Lu +2 位作者 Youwei Ding Yihua Song Jinyue Xia 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3141-3154,共14页
Machine learning tasks such as image classification need to select the features that can describe the image well.The image has individual features and common features,and they are interdependent.If only the individual ... Machine learning tasks such as image classification need to select the features that can describe the image well.The image has individual features and common features,and they are interdependent.If only the individual features of the image are emphasized,the neural network is prone to overfitting.If only the common features of images are emphasized,neural networks will not be able to adapt to diversified learning environments.In order to better integrate individual features and common features,based on skeleton and edge individual features extraction,this paper designed a mixed feature extraction method based on reso-nancefiltering,named resonance layer.Resonance layer is in front of the neural network input layer,using K3M algorithm to extract image skeleton,using the Canny algorithm to extract image border,using resonancefiltering to reconstruct training image byfiltering image noise,through the common features of the images in the training set and efficient expression of individual characteristics to improve the efficiency of feature extraction of neural network,so as to improve the accuracy of neural network prediction.Taking the fully connected neural net-work and LeNet-5 neural networks for example,the experiment on handwritten digits database shows that the proposed mixed feature extraction method can improve the accuracy of training whilefiltering out part of image noise data. 展开更多
关键词 Deep learning feature extraction resonancefiltering image reconstruction
下载PDF
Missing Value Imputation Model Based on Adversarial Autoencoder Using Spatiotemporal Feature Extraction
12
作者 Dong-Hoon Shin Seo-El Lee +1 位作者 Byeong-Uk Jeon Kyungyong Chung 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1925-1940,共16页
Recently,the importance of data analysis has increased significantly due to the rapid data increase.In particular,vehicle communication data,considered a significant challenge in Intelligent Transportation Systems(ITS... Recently,the importance of data analysis has increased significantly due to the rapid data increase.In particular,vehicle communication data,considered a significant challenge in Intelligent Transportation Systems(ITS),has spatiotemporal characteristics and many missing values.High missing values in data lead to the decreased predictive performance of models.Existing missing value imputation models ignore the topology of transportation net-works due to the structural connection of road networks,although physical distances are close in spatiotemporal image data.Additionally,the learning process of missing value imputation models requires complete data,but there are limitations in securing complete vehicle communication data.This study proposes a missing value imputation model based on adversarial autoencoder using spatiotemporal feature extraction to address these issues.The proposed method replaces missing values by reflecting spatiotemporal characteristics of transportation data using temporal convolution and spatial convolution.Experimental results show that the proposed model has the lowest error rate of 5.92%,demonstrating excellent predictive accuracy.Through this,it is possible to solve the data sparsity problem and improve traffic safety by showing superior predictive performance. 展开更多
关键词 Missing value adversarial autoencoder spatiotemporal feature extraction
下载PDF
A Deep CNN-LSTM-Based Feature Extraction for Cyber-Physical System Monitoring
13
作者 Alaa Omran Almagrabi 《Computers, Materials & Continua》 SCIE EI 2023年第8期2079-2093,共15页
A potential concept that could be effective for multiple applications is a“cyber-physical system”(CPS).The Internet of Things(IoT)has evolved as a research area,presenting new challenges in obtaining valuable data t... A potential concept that could be effective for multiple applications is a“cyber-physical system”(CPS).The Internet of Things(IoT)has evolved as a research area,presenting new challenges in obtaining valuable data through environmental monitoring.The existing work solely focuses on classifying the audio system of CPS without utilizing feature extraction.This study employs a deep learning method,CNN-LSTM,and two-way feature extraction to classify audio systems within CPS.The primary objective of this system,which is built upon a convolutional neural network(CNN)with Long Short Term Memory(LSTM),is to analyze the vocalization patterns of two different species of anurans.It has been demonstrated that CNNs,when combined with mel-spectrograms for sound analysis,are suitable for classifying ambient noises.Initially,the data is augmented and preprocessed.Next,the mel spectrogram features are extracted through two-way feature extraction.First,Principal Component Analysis(PCA)is utilized for dimensionality reduction,followed by Transfer learning for audio feature extraction.Finally,the classification is performed using the CNN-LSTM process.This methodology can potentially be employed for categorizing various biological acoustic objects and analyzing biodiversity indexes in natural environments,resulting in high classification accuracy.The study highlights that this CNNLSTM approach enables cost-effective and resource-efficient monitoring of large natural regions.The dissemination of updated CNN-LSTM models across distant IoT nodes is facilitated flexibly and dynamically through the utilization of CPS. 展开更多
关键词 Cyber-physical system internet of things feature extraction classification CNN principal component analysis mel spectrograms MONITORING deep learning
下载PDF
Novel Multimodal Biometric Feature Extraction for Precise Human Identification
14
作者 J.Vasavi M.S.Abirami 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1349-1363,共15页
In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris r... In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris recognition,and so on.However,the precise identification of human features is still physically chal-lenging in humans during their lifetime resulting in a variance in their appearance or features.In response to these challenges,a novel Multimodal Biometric Feature Extraction(MBFE)model is proposed to extract the features from the noisy sen-sor data using a modified Ranking-based Deep Convolution Neural Network(RDCNN).The proposed MBFE model enables the feature extraction from differ-ent biometric images that includes iris,palm print,and lip,where the images are preprocessed initially for further processing.The extracted features are validated after optimal extraction by the RDCNN by splitting the datasets to train the fea-ture extraction model and then testing the model with different sets of input images.The simulation is performed in matlab to test the efficacy of the modal over multi-modal datasets and the simulation result shows that the proposed meth-od achieves increased accuracy,precision,recall,and F1 score than the existing deep learning feature extraction methods.The performance improvement of the MBFE Algorithm technique in terms of accuracy,precision,recall,and F1 score is attained by 0.126%,0.152%,0.184%,and 0.38%with existing Back Propaga-tion Neural Network(BPNN),Human Identification Using Wavelet Transform(HIUWT),Segmentation Methodology for Non-cooperative Recognition(SMNR),Daugman Iris Localization Algorithm(DILA)feature extraction techni-ques respectively. 展开更多
关键词 Multimodalbiometric feature extraction ranking-baseddeepconvolution neural network noisy sensor data palm prints lip biometric iris recognition
下载PDF
Image Feature Extraction and Matching of Augmented Solar Images in Space Weather
15
作者 WANG Rui BAO Lili CAI Yanxia 《空间科学学报》 CAS CSCD 北大核心 2023年第5期840-852,共13页
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed... Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms. 展开更多
关键词 Augmented reality Augmented image Image feature point extraction and matching Space weather Solar image
下载PDF
Robust Radiometric Normalization of the near Equatorial Satellite Images Using Feature Extraction and Remote Sensing Analysis
16
作者 Hayder Dibs Shattri Mansor +1 位作者 Noordin Ahmad Nadhir Al-Ansari 《Engineering(科研)》 CAS 2023年第2期75-89,共15页
Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has ... Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively. 展开更多
关键词 Relative Radiometric Normalization Scale Invariant feature Transform Automatically extraction Control Points Sum of Absolute Difference
下载PDF
Feature Extraction and Recognition for Rolling Element Bearing Fault Utilizing Short-Time Fourier Transform and Non-negative Matrix Factorization 被引量:24
17
作者 GAO Huizhong LIANG Lin +1 位作者 CHEN Xiaoguang XU Guanghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期96-105,共10页
Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smar... Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smartly. However, it is difficult to classitythe high dimensional feature matrix directly because of too large dimensions for many classifiers. This paper combines the concepts of time-frequency distribution(TFD) with non-negative matrix factorization(NMF), and proposes a novel TFD matrix factorization method to enhance representation and identification of bearing fault. Throughout this method, the TFD of a vibration signal is firstly accomplished to describe the localized faults with short-time Fourier transform(STFT). Then, the supervised NMF mapping is adopted to extract the fault features from TFD. Meanwhile, the fault samples can be clustered and recognized automatically by using the clustering property of NMF. The proposed method takes advantages of the NMF in the parts-based representation and the adaptive clustering. The localized fault features of interest can be extracted as well. To evaluate the performance of the proposed method, the 9 kinds of the bearing fault on a test bench is performed. The proposed method can effectively identify the fault severity and different fault types. Moreover, in comparison with the artificial neural network(ANN), NMF yields 99.3% mean accuracy which is much superior to ANN. This research presents a simple and practical resolution for the fault diagnosis problem of rolling element bearing in high dimensional feature space. 展开更多
关键词 time-frequency distribution non-negative matrix factorization rolling element bearing feature extraction
下载PDF
Auditory-model-based Feature Extraction Method for Mechanical Faults Diagnosis 被引量:12
18
作者 LI Yungong ZHANG Jinping +2 位作者 DAI Li ZHANG Zhanyi LIU Jie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期391-397,共7页
It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory... It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory systems, which may improve the effects of mechanical signal analysis and enrich the methods of mechanical faults features extraction. However the existing methods are all based on explicit senses of mathematics or physics, and have some shortages on distinguishing different faults, stability, and suppressing the disturbance noise, etc. For the purpose of improving the performances of the work of feature extraction, an auditory model, early auditory(EA) model, is introduced for the first time. This auditory model transforms time domain signal into auditory spectrum via bandpass filtering, nonlinear compressing, and lateral inhibiting by simulating the principle of the human auditory system. The EA model is developed with the Gammatone filterbank as the basilar membrane. According to the characteristics of vibration signals, a method is proposed for determining the parameter of inner hair cells model of EA model. The performance of EA model is evaluated through experiments on four rotor faults, including misalignment, rotor-to-stator rubbing, oil film whirl, and pedestal looseness. The results show that the auditory spectrum, output of EA model, can effectively distinguish different faults with satisfactory stability and has the ability to suppress the disturbance noise. Then, it is feasible to apply auditory model, as a new method, to the feature extraction for mechanical faults diagnosis with effect. 展开更多
关键词 faults diagnosis feature extraction auditory model early auditory model
下载PDF
FEATURE EXTRACTION OF VIBRATION SIGNALS BASED ON WAVELET PACKET TRANSFORM 被引量:9
19
作者 ShaoJunpeng JiaHuijuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期25-27,共3页
A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method ... A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method provides a finer analysis and better time-frequencylocalization capabilities than any other analysis methods. Both details and approximations are splitinto finer components and result in better-localized frequency ranges corresponding to each node ofa wavelet packet tree. For the punpose of feature extraction, a hard threshold is given and theenergy of the coefficients above the threshold is used, as a criterion for the selection of the bestvector. The feature extraction of a vibration signal is accomplished by computing thereconstruction signal and its spectrum. When applied to a rolling bear vibration signal featureextraction, the proposed method can lead to be very effective. 展开更多
关键词 Wavelet packet transform feature extraction Vibration signal
下载PDF
Feature Extraction Method Based on Pseudo-Wigner-Ville Distribution for Rotational Machinery in Variable Operating Conditions 被引量:8
20
作者 WANG Huaqing LIKe +1 位作者 SUN Hao CHEN Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期661-668,共8页
In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption... In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption that machinery operates under a constant rotational speed. However, when the rotational speed varies in the broader range, the pass-frequencies vary with the change of rotational speed and bearing faults cannot be identified by the interval of impacts. Researches related to automatic diagnosis for rotational machinery in variable operating conditions were quite few. A novel automatic feature extraction method is proposed based on a pseudo-Wigner-Ville distribution (PWVD) and an extraction of symptom parameter (SP). An extraction method for instantaneous feature spectrum is presented using the relative crossing information (RCI) and sequential inference approach, by which the feature spectrum from time-frequency distribution can be automatically, sequentially extracted. The SPs are considered in the frequency domain using the extracted feature spectrum to identify among the conditions of a machine. A method to obtain the synthetic symptom parameter is also proposed by the least squares mapping (LSM) technique for increasing the diagnosis sensitivity of SP. Practical examples of diagnosis for bearings are given in order to verify the effectiveness of the proposed method. The verification results show that the features of bearing faults, such as the outer-race, inner-race and roller element defects have been effectively extracted, and the proposed method can be used for condition diagnosis of a machine under the variable rotational speed. 展开更多
关键词 feature extraction pseudo-wigner-ville distribution variable operating condition sequential diagnosis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部