期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Experimental validation of a signal-based approach for structural earthquake damage detection using fractal dimension of time frequency feature 被引量:2
1
作者 Tao Dongwang Mao Chenxi +1 位作者 Zhang Dongyu Li Hui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第4期671-680,共10页
This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resis... This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resist frame (MRF), and validates the approach with shaking table tests. The time frequency feature (TFF) of the relative displacement at measured story is defined as the real part of the coefficients of the analytical wavelet transform. The fractal dimension (FD) is to quantify the TFF within the fundamental frequency band using box counting method. It is verified that the FDTFFs at all stories of the linear MRF are identical with the help of static condensation method and modal superposition principle, while the FDTFFs at the stories with localized nonlinearities due to damage will be different from those at the stories without nonlinearities using the reverse-path methodology. By comparing the FDTFFs of displacements at measured stories in a structure, the damage-induced nonlinearity of the structure under strong ground motion can be detected and localized. Finally shaking table experiments on a 1:8 scale sixteen-story three-bay steel MRF with added frictional dampers, which generate local nonlinearities, are conducted to validate the approach. 展开更多
关键词 earthquake damage detection time frequency feature fractal dimension signal-based shaking table test frictional damper
下载PDF
Intelligent recognition and information extraction of radar complex jamming based on time-frequency features
2
作者 PENG Ruihui WU Xingrui +3 位作者 WANG Guohong SUN Dianxing YANG Zhong LI Hongwen 《Journal of Systems Engineering and Electronics》 SCIE 2024年第5期1148-1166,共19页
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p... In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results. 展开更多
关键词 complex jamming recognition time frequency feature convolutional neural network(CNN) parameter estimation
下载PDF
lp norm inverse spectral decomposition and its multi-sparsity fusion interpretation 被引量:2
3
作者 Li Sheng-Jun Wang Tie-Yi +3 位作者 Gao Jian-Hu Liu Bing-Yang Gui Jin-Yong Wang Hong-Qiu 《Applied Geophysics》 SCIE CSCD 2021年第4期569-578,595,共11页
Spectral decomposition has been widely used in the detection and identifi cation of underground anomalous features(such as faults,river channels,and karst caves).However,the conventional spectral decomposition method ... Spectral decomposition has been widely used in the detection and identifi cation of underground anomalous features(such as faults,river channels,and karst caves).However,the conventional spectral decomposition method is restrained by the window function,and hence,it mostly has low time–frequency focusing and resolution,thereby hampering the fi ne interpretation of seismic targets.To solve this problem,we investigated the sparse inverse spectral decomposition constrained by the lp norm(0<p≤1).Using a numerical model,we demonstrated the higher time–frequency resolution of this method and its capability for improving the seismic interpretation for thin layers.Moreover,given the actual underground geology that can be often complex,we further propose a p-norm constrained inverse spectral attribute interpretation method based on multiresolution time–frequency feature fusion.By comprehensively analyzing the time–frequency spectrum results constrained by the diff erent p-norms,we can obtain more refined interpretation results than those obtained by the traditional strategy,which incorporates a single norm constraint.Finally,the proposed strategy was applied to the processing and interpretation of actual three-dimensional seismic data for a study area covering about 230 km^(2) in western China.The results reveal that the surface water system in this area is characterized by stepwise convergence from a higher position in the north(a buried hill)toward the south and by the development of faults.We thus demonstrated that the proposed method has huge application potential in seismic interpretation. 展开更多
关键词 Spectral decomposition lp norm multiresolution time–frequency feature fusion seismic interpretation fi ne interpretation
下载PDF
Soft Computing Based Discriminator Model for Glaucoma Diagnosis
4
作者 Anisha Rebinth S.Mohan Kumar 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期867-880,共14页
In this study, a Discriminator Model for Glaucoma Diagnosis (DMGD)using soft computing techniques is presented. As the biomedical images such asfundus images are often acquired in high resolution, the Region of Intere... In this study, a Discriminator Model for Glaucoma Diagnosis (DMGD)using soft computing techniques is presented. As the biomedical images such asfundus images are often acquired in high resolution, the Region of Interest (ROI)for glaucoma diagnosis must be selected at first to reduce the complexity of anysystem. The DMGD system uses a series of pre-processing;initial cropping by thegreen channel’s intensity, Spatially Weighted Fuzzy C Means (SWFCM), bloodvessel detection and removal by Gaussian Derivative Filters (GDF) and inpaintingalgorithms. Once the ROI has been selected, the numerical features such as colour, spatial domain features from Local Binary Pattern (LBP) and frequencydomain features from LAWS are generated from the corresponding ROI forfurther classification using kernel based Support Vector Machine (SVM). TheDMGD system performances are validated using four fundus image databases;ORIGA, RIM-ONE, DRISHTI-GS1, and HRF with four different kernels;LinearKernel (LK), Polynomial Kernel (PK), Radial Basis Function (RBFK) kernel,Quadratic Kernel (QK) based SVM classifiers. Results show that the DMGD system classifies the fundus images accurately using the multiple features and kernelbased classifies from the properly segmented ROI. 展开更多
关键词 GLAUCOMA support vector classification clustering technique spatial domain and frequency domain features
下载PDF
Classification of hyperspectral remote sensing images using frequency spectrum similarity 被引量:10
5
作者 WANG Ke GU XingFa +3 位作者 YU Tao MENG QingYan ZHAO LiMin FENG Li 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第4期980-988,共9页
An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discre... An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discrete signal,and the frequency spectrum is obtained using discrete Fourier transform.The discrepancy of frequency spectrum between ground objects' spectral signatures is visible,thus the difference between frequency spectra of reference and target spectral signature is used to measure the spectral similarity.Canberra distance is introduced to increase the contribution from higher frequency components.Then,the number of harmonics involved in the proposed algorithm is determined after analyzing the frequency spectrum energy cumulative distribution function of ground object.In order to evaluate the performance of the proposed algorithm,two hyperspectral remote sensing images are adopted as experimental data.The proposed algorithm is compared with spectral angle mapper (SAM),spectral information divergence (SID) and Euclidean distance (ED) using the product accuracy,user accuracy,overall accuracy,average accuracy and Kappa coefficient.The results show that the proposed algorithm can be applied to hyperspectral image classification effectively. 展开更多
关键词 hyperspectral image spectral similarity frequency spectrum feature remote sensing CLASSIFICATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部