Mazu is the most famous goddess of canal transport in China,and one of the three folk beliefs in China.Japan is our neighbor across the sea.As early as 1000 years ago,Japan was influenced by the Mazu ceremonial cultur...Mazu is the most famous goddess of canal transport in China,and one of the three folk beliefs in China.Japan is our neighbor across the sea.As early as 1000 years ago,Japan was influenced by the Mazu ceremonial culture.Through big data analysis,this study conducted database counting,screening,and analysis on the Mazu culture in Diaolong,the full-text database of Chinese and Japanese ancient books.Besides,it explored the hot topics of concern and emotional attitudes,and then analyzed the important role of Mazu culture in the cultural exchange and mutual learning between China and Japan in the new era,with a view to completing the contemporary task of“people-to-people bond”and achieving common development.展开更多
To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image applicat...To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image application firstly, and then the algorithm adopted for feature extraction and multidimensional indexing, and relevance feedback by this model are analyzed in detail. Finally, the contents intending to be researched about this model are proposed.展开更多
Agriculture is an important research area in the field of visual recognition by computers.Plant diseases affect the quality and yields of agriculture.Early-stage identification of crop disease decreases financial loss...Agriculture is an important research area in the field of visual recognition by computers.Plant diseases affect the quality and yields of agriculture.Early-stage identification of crop disease decreases financial losses and positively impacts crop quality.The manual identification of crop diseases,which aremostly visible on leaves,is a very time-consuming and costly process.In this work,we propose a new framework for the recognition of cucumber leaf diseases.The proposed framework is based on deep learning and involves the fusion and selection of the best features.In the feature extraction phase,VGG(Visual Geometry Group)and Inception V3 deep learning models are considered and fine-tuned.Both fine-tuned models are trained using deep transfer learning.Features are extracted in the later step and fused using a parallel maximum fusion approach.In the later step,best features are selected usingWhale Optimization algorithm.The best-selected features are classified using supervised learning algorithms for the final classification process.The experimental process was conducted on a privately collected dataset that consists of five types of cucumber disease and achieved accuracy of 96.5%.A comparison with recent techniques shows the significance of the proposed method.展开更多
Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained ...Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance.展开更多
The paper firstly analyze cache replacement strategies at present, and proposed the ideas of the semantic query cache replacement based on user access features, and describe the semantic similarity calculation and rea...The paper firstly analyze cache replacement strategies at present, and proposed the ideas of the semantic query cache replacement based on user access features, and describe the semantic similarity calculation and realize the algorithm of replacement strategy. The strategy use semantic to match information in the query cache, through dynamic analysis and tracking three characteristics of user access time, user access to content and Business Association, give out the similarity minimum of the cache item, to improve the hit ratio of the cache and the response time and throughput of the server is improved.展开更多
文摘Mazu is the most famous goddess of canal transport in China,and one of the three folk beliefs in China.Japan is our neighbor across the sea.As early as 1000 years ago,Japan was influenced by the Mazu ceremonial culture.Through big data analysis,this study conducted database counting,screening,and analysis on the Mazu culture in Diaolong,the full-text database of Chinese and Japanese ancient books.Besides,it explored the hot topics of concern and emotional attitudes,and then analyzed the important role of Mazu culture in the cultural exchange and mutual learning between China and Japan in the new era,with a view to completing the contemporary task of“people-to-people bond”and achieving common development.
文摘To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image application firstly, and then the algorithm adopted for feature extraction and multidimensional indexing, and relevance feedback by this model are analyzed in detail. Finally, the contents intending to be researched about this model are proposed.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group number RG-1441-425.
文摘Agriculture is an important research area in the field of visual recognition by computers.Plant diseases affect the quality and yields of agriculture.Early-stage identification of crop disease decreases financial losses and positively impacts crop quality.The manual identification of crop diseases,which aremostly visible on leaves,is a very time-consuming and costly process.In this work,we propose a new framework for the recognition of cucumber leaf diseases.The proposed framework is based on deep learning and involves the fusion and selection of the best features.In the feature extraction phase,VGG(Visual Geometry Group)and Inception V3 deep learning models are considered and fine-tuned.Both fine-tuned models are trained using deep transfer learning.Features are extracted in the later step and fused using a parallel maximum fusion approach.In the later step,best features are selected usingWhale Optimization algorithm.The best-selected features are classified using supervised learning algorithms for the final classification process.The experimental process was conducted on a privately collected dataset that consists of five types of cucumber disease and achieved accuracy of 96.5%.A comparison with recent techniques shows the significance of the proposed method.
文摘Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance.
文摘The paper firstly analyze cache replacement strategies at present, and proposed the ideas of the semantic query cache replacement based on user access features, and describe the semantic similarity calculation and realize the algorithm of replacement strategy. The strategy use semantic to match information in the query cache, through dynamic analysis and tracking three characteristics of user access time, user access to content and Business Association, give out the similarity minimum of the cache item, to improve the hit ratio of the cache and the response time and throughput of the server is improved.