This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep ...This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.展开更多
Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original dat...Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original data,which are often imperfect,inconsistent,complex,and uncertain.Traditional data fusion methods like probabilistic fusion,set-based fusion,and evidential belief reasoning fusion methods are computationally complex and require accurate classification and proper handling of raw data.Data fusion is the process of integrating multiple data sources.Data filtering means examining a dataset to exclude,rearrange,or apportion data according to the criteria.Different sensors generate a large amount of data,requiring the development of machine learning(ML)algorithms to overcome the challenges of traditional methods.The advancement in hardware acceleration and the abundance of data from various sensors have led to the development of machine learning(ML)algorithms,expected to address the limitations of traditional methods.However,many open issues still exist as machine learning algorithms are used for data fusion.From the literature,nine issues have been identified irrespective of any application.The decision-makers should pay attention to these issues as data fusion becomes more applicable and successful.A fuzzy analytical hierarchical process(FAHP)enables us to handle these issues.It helps to get the weights for each corresponding issue and rank issues based on these calculated weights.The most significant issue identified is the lack of deep learning models used for data fusion that improve accuracy and learning quality weighted 0.141.The least significant one is the cross-domain multimodal data fusion weighted 0.076 because the whole semantic knowledge for multimodal data cannot be captured.展开更多
基金Sponsored by the Fundamental Research Funds for the Central Universities of China(Grant No.PA2023IISL0098)the Hefei Municipal Natural Science Foundation(Grant No.202201)+1 种基金the National Natural Science Foundation of China(Grant No.62071164)the Open Fund of Information Materials and Intelligent Sensing Laboratory of Anhui Province(Anhui University)(Grant No.IMIS202214 and IMIS202102)。
文摘This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.
基金supported in part by the Higher Education Sprout Project from the Ministry of Education(MOE)and National Science and Technology Council,Taiwan(109-2628-E-224-001-MY3,112-2622-E-224-003)and in part by Isuzu Optics Corporation.Dr.Shih-Yu Chen is the corresponding author.
文摘Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original data,which are often imperfect,inconsistent,complex,and uncertain.Traditional data fusion methods like probabilistic fusion,set-based fusion,and evidential belief reasoning fusion methods are computationally complex and require accurate classification and proper handling of raw data.Data fusion is the process of integrating multiple data sources.Data filtering means examining a dataset to exclude,rearrange,or apportion data according to the criteria.Different sensors generate a large amount of data,requiring the development of machine learning(ML)algorithms to overcome the challenges of traditional methods.The advancement in hardware acceleration and the abundance of data from various sensors have led to the development of machine learning(ML)algorithms,expected to address the limitations of traditional methods.However,many open issues still exist as machine learning algorithms are used for data fusion.From the literature,nine issues have been identified irrespective of any application.The decision-makers should pay attention to these issues as data fusion becomes more applicable and successful.A fuzzy analytical hierarchical process(FAHP)enables us to handle these issues.It helps to get the weights for each corresponding issue and rank issues based on these calculated weights.The most significant issue identified is the lack of deep learning models used for data fusion that improve accuracy and learning quality weighted 0.141.The least significant one is the cross-domain multimodal data fusion weighted 0.076 because the whole semantic knowledge for multimodal data cannot be captured.