期刊文献+
共找到293篇文章
< 1 2 15 >
每页显示 20 50 100
The real-time dynamic liquid level calculation method of the sucker rod well based on multi-view features fusion
1
作者 Cheng-Zhe Yin Kai Zhang +4 位作者 Jia-Yuan Liu Xin-Yan Wang Min Li Li-Ming Zhang Wen-Sheng Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3575-3586,共12页
In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the ... In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the dynamic liquid level real-time calculation. In this paper, the multi-source data are regarded as the different views including the load of the sucker rod and liquid in the wellbore, the image of the dynamometer card and production dynamics parameters. These views can be fused by the multi-branch neural network with special fusion layer. With this method, the features of different views can be extracted by considering the difference of the modality and physical meaning between them. Then, the extraction results which are selected by multinomial sampling can be the input of the fusion layer.During the fusion process, the availability under different views determines whether the views are fused in the fusion layer or not. In this way, not only the correlation between the views can be considered, but also the missing data can be processed automatically. The results have shown that the load and production features fusion(the method proposed in this paper) performs best with the lowest mean absolute error(MAE) 39.63 m, followed by the features concatenation with MAE 42.47 m. They both performed better than only a single view and the lower MAE of the features fusion indicates that its generalization ability is stronger. In contrast, the image feature as a single view contributes little to the accuracy improvement after fused with other views with the highest MAE. When there is data missing in some view, compared with the features concatenation, the multi-view features fusion will not result in the unavailability of a large number of samples. When the missing rate is 10%, 30%, 50% and 80%, the method proposed in this paper can reduce MAE by 5.8, 7, 9.3 and 20.3 m respectively. In general, the multi-view features fusion method proposed in this paper can improve the accuracy obviously and process the missing data effectively, which helps provide technical support for real-time monitoring of the dynamic liquid level in oil fields. 展开更多
关键词 Dynamic liquid level Multi view features fusion Sucker rod well Dynamometer cards
下载PDF
HOG-VGG:VGG Network with HOG Feature Fusion for High-Precision PolSAR Terrain Classification
2
作者 Jiewen Li Zhicheng Zhao +2 位作者 Yanlan Wu Jiaqiu Ai Jun Shi 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期1-15,共15页
This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep ... This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively. 展开更多
关键词 PolSAR terrain classification high⁃precision HOG⁃VGG feature representation completeness elevation multi⁃level feature fusion
下载PDF
A Multi-Detector Security Architecture with Local Feature-Level Fusion for Multimodal Biometrics
3
作者 Sorin Soviany Sorin Puscoci Cristina Soviany 《通讯和计算机(中英文版)》 2013年第9期1200-1218,共19页
关键词 生物特征识别 特征级融合 多探测器 安全架构 多模态 生物识别系统 识别模型 生物识别技术
下载PDF
Enhanced Feature Fusion Segmentation for Tumor Detection Using Intelligent Techniques
4
作者 R.Radha R.Gopalakrishnan 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3113-3127,共15页
In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective... In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective cells precisely during the diagnosis phase helps tofight the greatest exterminator of mankind.Early detec-tion of these defective cells requires an accurate computer-aided diagnostic system(CAD)that supports early treatment and promotes survival rates of patients.An ear-lier version of CAD systems relies greatly on the expertise of radiologist and it con-sumed more time to identify the defective region.The manuscript takes the efficacy of coalescing features like intensity,shape,and texture of the magnetic resonance image(MRI).In the Enhanced Feature Fusion Segmentation based classification method(EEFS)the image is enhanced and segmented to extract the prominent fea-tures.To bring out the desired effect the EEFS method uses Enhanced Local Binary Pattern(EnLBP),Partisan Gray Level Co-occurrence Matrix Histogram of Oriented Gradients(PGLCMHOG),and iGrab cut method to segment image.These prominent features along with deep features are coalesced to provide a single-dimensional fea-ture vector that is effectively used for prediction.The coalesced vector is used with the existing classifiers to compare the results of these classifiers with that of the gen-erated vector.The generated vector provides promising results with commendably less computatio nal time for pre-processing and classification of MR medical images. 展开更多
关键词 Enhanced local binary pattern level iGrab cut method magnetic resonance image computer aided diagnostic system enhanced feature fusion segmentation enhanced local binary pattern
下载PDF
考虑跨层特征融合的抛洒风险车辆检测方法
5
作者 何永福 谢世维 +1 位作者 于佳禄 陈思宇 《浙江大学学报(工学版)》 北大核心 2025年第2期300-309,共10页
面对货运车辆抛洒风险检测的难题,针对现有方法存在的抛洒风险关键特征提取能力不足、特征跨层融合不充分的问题,提出面向货运车辆的抛洒风险检测方法(SRVDNet).骨干网络引入大核可选择性感受野机制,增强网络对货运车辆抛洒风险特征的... 面对货运车辆抛洒风险检测的难题,针对现有方法存在的抛洒风险关键特征提取能力不足、特征跨层融合不充分的问题,提出面向货运车辆的抛洒风险检测方法(SRVDNet).骨干网络引入大核可选择性感受野机制,增强网络对货运车辆抛洒风险特征的学习能力.颈部网络引入聚集-分发特征融合机制,实现特征跨层融合,为检测头提供丰富的车厢类型、篷布边缘细节纹理、货物轮廓形状等信息.采用真实的高速公路货运车辆数据集,验证所提方法的效果.实验结果表明,SRVDNet表现出更优的性能,检测精度达到81.5%,与YOLOv5、 YOLOv6、YOLOv8、RT-DETR、PP-YOLOE、YOLOv9等车辆检测SOTA方法相比,mAP@0.5分别提升了3.70%、3.09%、2.86%、1.37%、1.41%、2.00%,且模型参数量相对较小,检测速度较高,有效提升了在货物装载不规则、少量货物和满载货物等场景下的抛洒风险识别能力,有助于抛洒物的源头治理,增强高速公路安全风险的识别预警能力. 展开更多
关键词 智能交通 抛洒风险检测 目标检测 车辆检测 跨层特征融合
下载PDF
Machine Learning for Data Fusion:A Fuzzy AHP Approach for Open Issues
6
作者 Vinay Kukreja Asha Abraham +3 位作者 K.Kalaiselvi K.Deepa Thilak Shanmugasundaram Hariharan Shih-Yu Chen 《Computers, Materials & Continua》 SCIE EI 2023年第12期2899-2914,共16页
Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original dat... Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original data,which are often imperfect,inconsistent,complex,and uncertain.Traditional data fusion methods like probabilistic fusion,set-based fusion,and evidential belief reasoning fusion methods are computationally complex and require accurate classification and proper handling of raw data.Data fusion is the process of integrating multiple data sources.Data filtering means examining a dataset to exclude,rearrange,or apportion data according to the criteria.Different sensors generate a large amount of data,requiring the development of machine learning(ML)algorithms to overcome the challenges of traditional methods.The advancement in hardware acceleration and the abundance of data from various sensors have led to the development of machine learning(ML)algorithms,expected to address the limitations of traditional methods.However,many open issues still exist as machine learning algorithms are used for data fusion.From the literature,nine issues have been identified irrespective of any application.The decision-makers should pay attention to these issues as data fusion becomes more applicable and successful.A fuzzy analytical hierarchical process(FAHP)enables us to handle these issues.It helps to get the weights for each corresponding issue and rank issues based on these calculated weights.The most significant issue identified is the lack of deep learning models used for data fusion that improve accuracy and learning quality weighted 0.141.The least significant one is the cross-domain multimodal data fusion weighted 0.076 because the whole semantic knowledge for multimodal data cannot be captured. 展开更多
关键词 Signal level fusion feature level fusion decision level fusion fuzzy hierarchical process machine learning
下载PDF
Analysis of color distortion and optimum fusion for remote sensing images using the statistical property of wavelet decomposition
7
作者 肖刚 Wang Shu 《High Technology Letters》 EI CAS 2006年第4期397-402,共6页
IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A stud... IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A study on IHS fusion indicates that the color distortion can't be avoided. Meanwhile, the statistical property of wavelet coefficient with wavelet decomposition reflects those significant features, such as edges, lines and regions. So, a united optimal fusion method, which uses the statistical property and IHS transform on pixel and feature levels, is proposed. That is, the high frequency of intensity component Ⅰ is fused on feature level with multi-resolution wavelet in IHS space. And the low frequency of intensity component Ⅰ is fused on pixel level with optimal weight coefficients. Spectral information and spatial resolution are two performance indexes of optimal weight coefficients. Experiment results with QuickBird data of Shanghai show that it is a practical and effective method. 展开更多
关键词 color distortion multi-resolution wavelet remote sensing images IHS fusion statistieal property optimal fusion feature level pixel level
下载PDF
多层次时空特征自适应集成与特有-共享特征融合的双模态情感识别 被引量:3
8
作者 孙强 陈远 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第2期574-587,共14页
在结合脑电(EEG)信号与人脸图像的双模态情感识别领域中,通常存在两个挑战性问题:(1)如何从EEG信号中以端到端方式学习到更具显著性的情感语义特征;(2)如何充分利用双模态信息,捕捉双模态特征中情感语义的一致性与互补性。为此,提出了... 在结合脑电(EEG)信号与人脸图像的双模态情感识别领域中,通常存在两个挑战性问题:(1)如何从EEG信号中以端到端方式学习到更具显著性的情感语义特征;(2)如何充分利用双模态信息,捕捉双模态特征中情感语义的一致性与互补性。为此,提出了多层次时空特征自适应集成与特有-共享特征融合的双模态情感识别模型。一方面,为从EEG信号中获得更具显著性的情感语义特征,设计了多层次时空特征自适应集成模块。该模块首先通过双流结构捕捉EEG信号的时空特征,再通过特征相似度加权并集成各层次的特征,最后利用门控机制自适应地学习各层次相对重要的情感特征。另一方面,为挖掘EEG信号与人脸图像之间的情感语义一致性与互补性,设计了特有-共享特征融合模块,通过特有特征的学习和共享特征的学习来联合学习情感语义特征,并结合损失函数实现各模态特有语义信息和模态间共享语义信息的自动提取。在DEAP和MAHNOB-HCI两种数据集上,采用跨实验验证和5折交叉验证两种实验手段验证了提出模型的性能。实验结果表明,该模型取得了具有竞争力的结果,为基于EEG信号与人脸图像的双模态情感识别提供了一种有效的解决方案。 展开更多
关键词 双模态情感识别 脑电 人脸图像 多层次时空特征 特征融合
下载PDF
基于特征增强及多层次融合的火灾火焰检测 被引量:1
9
作者 赵杰 汪洪法 吴凯 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第1期93-99,共7页
为提升火灾火焰识别检测方法性能,将传统图像处理与神经网络结合,提出1种基于特征增强及多层次融合的轻量级火灾火焰检测模型。模型利用多种色彩空间转换算法增强火焰特征信息,并设计双阶段多层次特征提取融合结构,配合空间注意力机制... 为提升火灾火焰识别检测方法性能,将传统图像处理与神经网络结合,提出1种基于特征增强及多层次融合的轻量级火灾火焰检测模型。模型利用多种色彩空间转换算法增强火焰特征信息,并设计双阶段多层次特征提取融合结构,配合空间注意力机制对火焰信息由粗到精进行提取;同时,针对火灾火焰特点,引入由浅到深逐步融合的自适应多尺度融合结构,提升对不同阶段火灾目标的检测精度。研究结果表明:本文模型可有效提升火灾火焰的检测效果,且具有更高的稳定性和鲁棒性,可准确高效地实现火灾火焰检测。研究结果可为现有火灾检测设备提供更准确的识别结果,从而更好地预防火灾事故发生。 展开更多
关键词 火灾火焰检测 神经网络 特征增强 多层次融合 自适应多尺度
下载PDF
基于改进Grabcut分割与多特征决策融合的电力线放电痕迹识别
10
作者 邹国锋 邵楠 +2 位作者 王连辉 梁栋 徐丙垠 《科学技术与工程》 北大核心 2024年第28期12239-12250,共12页
电力线触树故障中,导线表面的遗留痕迹是事故防治和责任认定的重要依据,但目前中外针对触树后电力线放电痕迹特征规律和辨识方法的研究极其匮乏。为此,搭建10 kV中压线路触树放电实验平台,采集放电后的导线表面痕迹图像,并对导线表面痕... 电力线触树故障中,导线表面的遗留痕迹是事故防治和责任认定的重要依据,但目前中外针对触树后电力线放电痕迹特征规律和辨识方法的研究极其匮乏。为此,搭建10 kV中压线路触树放电实验平台,采集放电后的导线表面痕迹图像,并对导线表面痕迹特征进行系统分析,为人工巡检和智能化痕迹识别提供基础依据。然后,提出改进型Grabcut前景提取方法,综合利用U^(2)Net的自动分割特点和Grabcut的高精度优势,解决Grabcut算法中初始框无法自动确定的问题,实现复杂背景下导线痕迹区域自动精准分割。最后,提出基于低层纹理、颜色特征和高层深度特征的导线表面痕迹全面表征,并采用多数投票规则实现低层和高层特征识别结果决策融合,获得导线痕迹辨识结果,测试实验中平均识别准确率达到91.68%,证明了方法的有效性。 展开更多
关键词 树线放电 前景提取 低层特征 深度特征 决策融合 痕迹识别
下载PDF
改进YOLOv8的农作物叶片病虫害识别算法
11
作者 张书贵 陈书理 赵展 《中国农机化学报》 北大核心 2024年第7期255-260,共6页
针对传统检测网络难以准确、高效地提取农作物叶片病虫害特征信息的问题,通过改进YOLOv8网络,提出一种多层级多尺度特征融合的农作物叶片病虫害识别算法。通过学习不同层级特征直接的特征关系,构建多层级特征编码模块,学习全面的特征表... 针对传统检测网络难以准确、高效地提取农作物叶片病虫害特征信息的问题,通过改进YOLOv8网络,提出一种多层级多尺度特征融合的农作物叶片病虫害识别算法。通过学习不同层级特征直接的特征关系,构建多层级特征编码模块,学习全面的特征表达;在Transformer的基础上设计多尺度空间—通道注意力模块,利用学习细粒度、粗粒度等多尺度全面的特征表达模式,捕获不同尺度特征之间的互补关系,并将所有特征表示有效融合起来,构成完整的图像特征表示,进而获取更佳的识别结果。在Plant Village公开数据集进行试验验证,结果表明:提出的改进方法能够有效提升配准精度,准确地识别出农作物叶片上同时存在的不同病虫害,对番茄叶片检测的mAP 0.5达到88.74%,比传统YOLOv8方法提升8.53%,且计算耗时没有明显增加。消融试验也充分证明所提各个模块的有效性,能够更好地实现高精度识别叶片病虫害,为农田智慧化管理提供有力支持和保障。 展开更多
关键词 叶片病虫害识别 多层级特征编码 多尺度特征融合 通道注意力 特征表达
下载PDF
DCFF-Net:基于人体骨骼点的双流跨级特征融合动作识别网络
12
作者 余翔 连世龙 《现代电子技术》 北大核心 2024年第23期81-88,共8页
在基于骨骼的动作识别任务中,骨骼点特征对于动作识别来说至关重要。针对现有方法存在输入特征不足、特征融合策略粗糙、参数量大等问题,提出一种基于人体骨骼点的双流跨级特征融合网络。首先,针对特征输入,用欧氏距离骨架特征(EDSF)和... 在基于骨骼的动作识别任务中,骨骼点特征对于动作识别来说至关重要。针对现有方法存在输入特征不足、特征融合策略粗糙、参数量大等问题,提出一种基于人体骨骼点的双流跨级特征融合网络。首先,针对特征输入,用欧氏距离骨架特征(EDSF)和余弦角度骨架特征(CASF)两种局部关节特征来表征人体骨骼序列,帮助网络识别不同体态和体态相似的人体动作;其次,考虑到部分动作类别的运动轨迹与全局运动的相关性,引入全局运动特征(GMF)弥补局部关节特征在此类动作上识别精度不足的问题;此外,为了加强不同特征之间的信息交互,提出一种跨级特征融合模块(CLFF),对不同特征层、不同属性的动作特征进行特征互补,丰富了网络的特征形式;最后,网络采用一维卷积(Conv1D)进行搭建,减轻了模型的计算负担。实验结果表明,所提模型在JHMDB身体动作数据集上获得了84.1%的识别准确率,在SHREC手势动作数据集上分别获得了97.4%(粗糙数据集)和95%(精确数据集)的识别准确率,取得了与先进方法相当的性能。 展开更多
关键词 动作识别 骨架特征 运动轨迹 局部关节特征 全局运动特征 跨级特征融合
下载PDF
多层次特征融合与超图卷积的生成对抗壁画修复
13
作者 陈永 陶美风 赵梦雪 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期208-218,共11页
针对现有壁画深度学习修复方法,存在上下文信息关注不足及结果欠佳的问题,提出了一种多层次特征融合与超图卷积的生成对抗修复模型。首先,利用金字塔特征分层对壁画进行多尺度层次特征提取,并采用混合空洞卷积单元扩大多层特征提取感受... 针对现有壁画深度学习修复方法,存在上下文信息关注不足及结果欠佳的问题,提出了一种多层次特征融合与超图卷积的生成对抗修复模型。首先,利用金字塔特征分层对壁画进行多尺度层次特征提取,并采用混合空洞卷积单元扩大多层特征提取感受野,以克服单尺度卷积操作对于壁画特征提取能力不足的问题。然后,提出多分支短链融合层及门控机制融合多分支特征方法,将相邻分支间的特征信息进行融合,使融合后的壁画特征图中既有同分支的特征,又有相邻分支的特征,以提高特征信息的利用率;并引入门控机制对特征进行选择融合,以减少细节信息的丢失。接着,将融合特征通过卷积长短期记忆网络(ConvLSTM)特征注意力方法,增强对壁画上下文信息的关注。最后,设计超图卷积壁画长程特征增强模块,通过在编码器和解码器的跳跃连接之间建立超图卷积层,利用超图卷积捕获编码器的空间特征信息,并将其迁移到解码器中,有助于解码器更好地生成壁画图像,以加强特征的长程依赖关系,并与SN-PatchGAN判别器对抗博弈从而完成修复。通过敦煌壁画数字化修复实验,结果表明:所提方法客观评价优于对比算法,对于破损壁画修复结果更加清晰自然。 展开更多
关键词 壁画修复 多层次特征 多分支短链融合 超图卷积 卷积长短期记忆网络
下载PDF
融合项目特征级信息的稀疏兴趣网络序列推荐
14
作者 胡胜利 武静雯 林凯 《计算机工程与设计》 北大核心 2024年第6期1743-1749,共7页
在以往提取多兴趣嵌入的序列推荐模型中仅能通过聚类的方法发现少量兴趣概念,忽视项目交互序列中特征级信息对最终推荐结果的影响。针对此问题,对传统的多兴趣序列推荐模型进行改进,提出一种融合项目特征级信息的稀疏兴趣网络序列推荐... 在以往提取多兴趣嵌入的序列推荐模型中仅能通过聚类的方法发现少量兴趣概念,忽视项目交互序列中特征级信息对最终推荐结果的影响。针对此问题,对传统的多兴趣序列推荐模型进行改进,提出一种融合项目特征级信息的稀疏兴趣网络序列推荐模型。实验结果表明,相比其它模型,该模型可以更好捕捉用户的多样化偏好并缓解冷启动问题。在给定数据集上,该模型比传统的序列推荐模型在命中率上平均提高了6.4%,归一化折损累计增益平均提高了8.7%。 展开更多
关键词 深度学习 序列推荐 多兴趣 稀疏兴趣网络 嵌入表征 特征级信息 特征融合
下载PDF
多层特征融合与语义增强的盲图像质量评价
15
作者 赵文清 许丽娇 +1 位作者 陈昊阳 李梦伟 《智能系统学报》 CSCD 北大核心 2024年第1期132-141,共10页
针对现有盲图像质量评价算法在面对真实失真图像时性能较差的问题,本文提出多层特征融合和语义信息增强相结合的无参考图像质量评价算法。提取图像的局部和全局失真特征,利用特征融合模块对特征进行多层融合;利用多层扩张卷积增强语义信... 针对现有盲图像质量评价算法在面对真实失真图像时性能较差的问题,本文提出多层特征融合和语义信息增强相结合的无参考图像质量评价算法。提取图像的局部和全局失真特征,利用特征融合模块对特征进行多层融合;利用多层扩张卷积增强语义信息,进而指导失真图像到质量分数的映射过程;考虑预测分数和主观分数之间的相对排名关系,对L_(1)损失函数和三元组排名损失函数进行融合,构建新的损失函数L_(mix)。为了验证本文方法的有效性,在野生图像质量挑战数据集上进行了验证和对比实验,该算法的斯皮尔曼等级相关系数与皮尔逊线性相关系数指标相比原算法分别提升2.3%和2.3%;在康斯坦茨真实图像质量数据数据集和野生图像质量挑战数据集上进行了跨数据集实验,该算法在面对真实失真图像时表现出了良好的泛化性能。 展开更多
关键词 深度学习 图像质量 卷积神经网络 特征提取 通道注意力结构 多层次特征融合 扩张卷积 三元组损失函数
下载PDF
基于改进蜣螂算法优化CNN-BiLSTM-Attention的串联电弧故障检测方法
16
作者 李海波 《电器与能效管理技术》 2024年第8期57-68,共12页
针对故障电弧特征提取不足、检测精度不高等问题,提出一种多特征融合的改进蜣螂算法(IDBO)优化融合注意力(Attention)机制的卷积神经网络(CNN)和双向长短期记忆(BiLSTM)神经网络的串联电弧故障检测方法。通过实验平台提取电流的时域、... 针对故障电弧特征提取不足、检测精度不高等问题,提出一种多特征融合的改进蜣螂算法(IDBO)优化融合注意力(Attention)机制的卷积神经网络(CNN)和双向长短期记忆(BiLSTM)神经网络的串联电弧故障检测方法。通过实验平台提取电流的时域、频域、时频域以及信号自回归参数模型特征;利用核主成分分析(KPCA)对特征进行降维融合,并将求取的特征向量作为CNN-BiLSTM-Attention的输入向量;引入Cubic混沌映射、螺旋搜索策略、动态权重系数、高斯柯西变异策略对蜣螂算法进行改进,利用改进蜣螂算法对CNN-BiLSTM-Attention超参数优化实现串联电弧故障诊断。结果表明,所提方法故障电弧检测准确率达到97.92%,可高效识别串联电弧故障。 展开更多
关键词 电弧故障 改进蜣螂算法 多特征融合 CNN-BiLSTM-Attention
下载PDF
基于特征级与决策级融合的农作物叶片病害识别 被引量:1
17
作者 王梓衡 沈继锋 +2 位作者 左欣 武小红 孙俊 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第3期286-294,共9页
针对单网络模型存在对数据产生学习偏好的缺陷,提出了一种基于多模型融合的农作物病害识别方法.该方法首先对4种主流卷积神经网络ResNet50、DenseNet121、Xception和MobileNetV2进行单模型性能评估,然后对这4种单模型分别进行特征级和... 针对单网络模型存在对数据产生学习偏好的缺陷,提出了一种基于多模型融合的农作物病害识别方法.该方法首先对4种主流卷积神经网络ResNet50、DenseNet121、Xception和MobileNetV2进行单模型性能评估,然后对这4种单模型分别进行特征级和决策级多模型融合,最终输出识别结果.特征级融合方法分别对每个子网络的最后输出特征层进行平均化、最大值化和拼接压缩融合,实现异质特征的高效互补;而决策级融合方法分别对每个子网络的输出概率进行最大化和平均化融合,实现概率分布决策的高效联合.在农作物病害数据集PDR2018上的试验结果表明:特征级融合明显优于决策级融合和单模型方法,且拼接压缩特征融合方法具有最高的识别准确率,达到了98.44%.此外该模型在PlantDoc数据子集和实际拍摄图像的跨库试验结果同样表明:特征融合方法比单模型方法具有更好的精度和泛化性能. 展开更多
关键词 农作物病害 特征级融合 决策级融合 卷积神经网络 泛化性能
下载PDF
自适应特征融合与cosIoU-NMS的目标检测算法 被引量:1
18
作者 马素刚 李宁博 +2 位作者 彭冠升 杨小宝 侯志强 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第1期112-121,共10页
针对经典的有锚框检测算法RetinaNet、无锚框检测算法FCOS等目标检测算法中存在漏检以及重复检测的问题,提出一种自适应特征融合与cosIoU-NMS的目标检测算法.首先采用自适应特征融合模块对多尺度特征中相邻3层特征加权融合,获取丰富的... 针对经典的有锚框检测算法RetinaNet、无锚框检测算法FCOS等目标检测算法中存在漏检以及重复检测的问题,提出一种自适应特征融合与cosIoU-NMS的目标检测算法.首先采用自适应特征融合模块对多尺度特征中相邻3层特征加权融合,获取丰富的上下文信息和空间信息;然后采用cosIoU计算检测框之间的余弦相似度与重叠面积,使目标定位更准确;最后使用cosIoU-NMS代替Greedy-NMS抑制置信度分数较高的冗余框,保留更准确的检测结果.以RetinaNet和FCOS为基准,在PASCAL VOC数据集上的实验结果表明,所提算法的检测精度达到81.3%和82.3%,分别提升2.8个百分点和1.2个百分点;在MSCOCO数据集上检测精度达到36.8%和38.0%,分别提升1.0个百分点和0.7个百分点;该算法能够增强特征表征能力,筛除多余的检测框,有效地提高检测性能. 展开更多
关键词 深度学习 目标检测 多尺度特征融合 交并比 非极大值抑制 余弦相似度
下载PDF
基于特征融合和损失优化的点云语义分割网络 被引量:1
19
作者 刘起源 路锦正 黄炳森 《计算机技术与发展》 2024年第5期66-72,共7页
针对目前大多数方法仅利用单尺度特征而忽视了具有不同感受野的多尺度特征信息、无法有效处理点云数据集中类别权重不平衡的问题,提出一种基于全阶段特征融合(FSFF)和平衡损失(BL)的分割网络(FFBL-Net)。首先,FSFF模块通过将不同编码阶... 针对目前大多数方法仅利用单尺度特征而忽视了具有不同感受野的多尺度特征信息、无法有效处理点云数据集中类别权重不平衡的问题,提出一种基于全阶段特征融合(FSFF)和平衡损失(BL)的分割网络(FFBL-Net)。首先,FSFF模块通过将不同编码阶段的可学习特征与当前阶段特征进行融合,促进了浅层和深层语义信息互补;融合后的特征被传递到编码融合模块(EFM)和解码融合模块(DFM),实现了特征的跨阶段融合。此外,为了解决数据集中类别分布不平衡的问题,引入BL损失调整类别间的梯度差异。实验结果表明,FFBL-Net在主流的大规模点云数据集S3DIS上,平均交并比达到了69.7%,总体准确率达到了89.9%。与PointNet++相比,FFBL-Net分别提升了12.4%和6.1%。 展开更多
关键词 点云 语义分割 多尺度特征融合 损失优化 神经网络优化
下载PDF
基于并行融合网络的多功能雷达行为辨识技术
20
作者 王宏兴 舒汀 +1 位作者 何劲 郁文贤 《现代雷达》 CSCD 北大核心 2024年第11期50-55,共6页
针对多功能雷达在信号层面分析时样式复杂多变、整体特征表述不全面、提供关键信息能力不足的问题,建立了一种多层级的多功能雷达行为层面表征模型,提出了一种基于一维深度卷积神经网络和门控循环网络并行处理的融合网络结构。在使用多... 针对多功能雷达在信号层面分析时样式复杂多变、整体特征表述不全面、提供关键信息能力不足的问题,建立了一种多层级的多功能雷达行为层面表征模型,提出了一种基于一维深度卷积神经网络和门控循环网络并行处理的融合网络结构。在使用多层级模型清晰有效地表征和分析多功能雷达行为的基础上,结合两种网络分别在局部深度特征提取和全局时序特征提取方面的优势,实现了对多功能雷达典型功能的行为辨识。仿真实验结果表明,在参数交织程度较高的情况下,该网络对多功能雷达四种典型功能的行为辨识准确率达到95.6%,证明了所提的并行网络算法在侦察情报分析领域具有良好的应用前景。 展开更多
关键词 多功能雷达 行为辨识 并行融合网络 多层级结构 特征提取
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部