期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MIA-UNet:Multi-Scale Iterative Aggregation U-Network for Retinal Vessel Segmentation 被引量:2
1
作者 Linfang Yu Zhen Qin +1 位作者 Yi Ding Zhiguang Qin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期805-828,共24页
As an important part of the new generation of information technology,the Internet of Things(IoT)has been widely concerned and regarded as an enabling technology of the next generation of health care system.The fundus ... As an important part of the new generation of information technology,the Internet of Things(IoT)has been widely concerned and regarded as an enabling technology of the next generation of health care system.The fundus photography equipment is connected to the cloud platform through the IoT,so as to realize the realtime uploading of fundus images and the rapid issuance of diagnostic suggestions by artificial intelligence.At the same time,important security and privacy issues have emerged.The data uploaded to the cloud platform involves more personal attributes,health status and medical application data of patients.Once leaked,abused or improperly disclosed,personal information security will be violated.Therefore,it is important to address the security and privacy issues of massive medical and healthcare equipment connecting to the infrastructure of IoT healthcare and health systems.To meet this challenge,we propose MIA-UNet,a multi-scale iterative aggregation U-network,which aims to achieve accurate and efficient retinal vessel segmentation for ophthalmic auxiliary diagnosis while ensuring that the network has low computational complexity to adapt to mobile terminals.In this way,users do not need to upload the data to the cloud platform,and can analyze and process the fundus images on their own mobile terminals,thus eliminating the leakage of personal information.Specifically,the interconnection between encoder and decoder,as well as the internal connection between decoder subnetworks in classic U-Net are redefined and redesigned.Furthermore,we propose a hybrid loss function to smooth the gradient and deal with the imbalance between foreground and background.Compared with the UNet,the segmentation performance of the proposed network is significantly improved on the premise that the number of parameters is only increased by 2%.When applied to three publicly available datasets:DRIVE,STARE and CHASE DB1,the proposed network achieves the accuracy/F1-score of 96.33%/84.34%,97.12%/83.17%and 97.06%/84.10%,respectively.The experimental results show that the MIA-UNet is superior to the state-of-the-art methods. 展开更多
关键词 Retinal vessel segmentation security and privacy redesigned skip connection feature maps aggregation hybrid loss function
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部