Image matching refers to the process of matching two or more images obtained at different time,different sensors or different conditions through a large number of feature points in the image.At present,image matching ...Image matching refers to the process of matching two or more images obtained at different time,different sensors or different conditions through a large number of feature points in the image.At present,image matching is widely used in target recognition and tracking,indoor positioning and navigation.Local features missing,however,often occurs in color images taken in dark light,making the extracted feature points greatly reduced in number,so as to affect image matching and even fail the target recognition.An unsharp masking(USM)based denoising model is established and a local adaptive enhancement algorithm is proposed to achieve feature point compensation by strengthening local features of the dark image in order to increase amount of image information effectively.Fast library for approximate nearest neighbors(FLANN)and random sample consensus(RANSAC)are image matching algorithms.Experimental results show that the number of effective feature points obtained by the proposed algorithm from images in dark light environment is increased,and the accuracy of image matching can be improved obviously.展开更多
Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body imag...Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms.展开更多
In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can ...In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can be considered as an extention of regular grid point based matching. It avoids the shortcome of grid point based matching. For example, with this method, we can avoid low or even no texture area where errors frequently appear in cross correlaton matching. In the mean while, it makes full use of some mature techniques such as probability relaxation, image pyramid and the like which have already been successfully used in grid point matching process. Application of the technique to DEM generaton in different regions proved that it is more reasonable and reliable.展开更多
Aming at the problem of the low accuracy of low dynamic vehicle velocity under the environment of uneven distribution of light intensity,an improved adaptive Kalman filter method for the velocity error estimate by the...Aming at the problem of the low accuracy of low dynamic vehicle velocity under the environment of uneven distribution of light intensity,an improved adaptive Kalman filter method for the velocity error estimate by the fusion of optical flow tracking and scale mvaiant feature transform(SIFT)is proposed.The algorithm introduces anonlinear fuzzy membership function and the filter residual for the noise covariance matrix in the adaptive adjustment process.In the process of calculating the velocity of the vehicle,the tracking and matching of the inter-frame displacement a d the vehicle velocity calculation a e carried out by using the optical fow tracing and the SIF'T methods,respectively.Meanwhile,the velocity difference between theoutputs of thesetwo methods is used as the observation of the improved adaptive Kalman filter.Finally,the velocity calculated by the optical fow method is corrected by using the velocity error estimate of the output of the modified adaptive Kalman filter.The results of semi-physical experiments show that the maximum velocityeror of the fusion algorithm is decreased by29%than that of the optical fow method,and the computation time is reduced by80%compared with the SIFT method.展开更多
An algorithm for automatically extracting feature points is developed after the area of feature points in 2-dimensional (2D) imagebeing located by probability theory, correlated methods and criterion for abnormity. Fe...An algorithm for automatically extracting feature points is developed after the area of feature points in 2-dimensional (2D) imagebeing located by probability theory, correlated methods and criterion for abnormity. Feature points in 2D image can be extracted only by calculating standard deviation of gray within sampled pixels area in our approach statically. While extracting feature points, the limitation to confirm threshold by tentative method according to some a priori information on processing image can be avoided. It is proved that the proposed algorithm is valid and reliable by extracting feature points on actual natural images with abundant and weak texture, including multi-object with complex background, respectively. It can meet the demand of extracting feature points of 2D image automatically in machine vision system.展开更多
During matching on feature point, gray correlation matching technology is utilized to extract multi-peaks as a coarse matching set. A pair of given corresponding reference points within the left and right images is us...During matching on feature point, gray correlation matching technology is utilized to extract multi-peaks as a coarse matching set. A pair of given corresponding reference points within the left and right images is used to calculate gradients of reference difference between the reference points and each feature point within the multi-peaks set. The unique correspondence is determined by criterion of minimal gradients of reference difference. The obtained correspondence is taken as a new pair of reference points to update the reference points continuously until all feature points in the left (or right) image being matched with the right (or left) image. The gradients of reference difference can be calculated easily by means of pre-setting a pair of obvious feature points in the left and right images as a pair of corresponding reference points. Besides, the efficiency of matching can be improved greatly by taking the obtained matching point as a new pair of reference points, and by updating the reference point continuously. It is proved that the proposed algorithm is valid and reliable by 3D reconstruction on two pairs of actual natural images with abundant and weak texture, respectively.展开更多
<div style="text-align:justify;"> This paper is aiming to obtain an arm-root curve function performing the human arm-root size and shape realistically. A gypsum replica of upper arm for young male was ...<div style="text-align:justify;"> This paper is aiming to obtain an arm-root curve function performing the human arm-root size and shape realistically. A gypsum replica of upper arm for young male was made and scanned for extracting the 3D coordinates of 4 feature points of shoulder point, the anterior/posterior armpit point and the axillary point describing the real arm-root shape under the normalized definitions, and the 5 landmarks were confirmed additionally for improving the fitting precision. Then, the wholly and piecewise fitting of arm-root curve with 9 feature points and mark points in total were generated respectively based on least square polynomial fitting method. Comparing to the wholly fitting, the piecewise fitted function segmented by the line between anterior and posterior axillary points showed a high fitting degree of arm-root morphology with R-square of 1, the length difference between fitted curve and gypsum curve is 0.003 cm within error range. And it provided a basic curve model with standard feature points to simulate arm-root morphology realistically by curve fitting for accurate body measurement extraction. </div>展开更多
Aimed at the problems of a traditional ant colony algorithm,such as the path search direction and field of view,an inability to find the shortest path,a propensity toward deadlock and an unsmooth path,an ant colony al...Aimed at the problems of a traditional ant colony algorithm,such as the path search direction and field of view,an inability to find the shortest path,a propensity toward deadlock and an unsmooth path,an ant colony algorithm for use in a new environment is proposed.First,the feature points of an obstacle are extracted to preprocess the grid map environment,which can avoid entering a trap and solve the deadlock problem.Second,these feature points are used as pathfinding access nodes to reduce the node access,with more moving directions to be selected,and the locations of the feature points to be selected determine the range of the pathfinding field of view.Then,based on the feature points,an unequal distribution of pheromones and a two-way parallel path search are used to improve the construction efficiency of the solution,an improved heuristic function is used to enhance the guiding role of the path search,and the pheromone volatilization coefficient is dynamically adjusted to avoid a premature convergence of the algorithm.Third,a Bezier curve is used to smooth the shortest path obtained.Finally,using grid maps with a different complexity and different scales,a simulation comparing the results of the proposed algorithm with those of traditional and other improved ant colony algorithms verifies its feasibility and superiority.展开更多
Over the last 20 years road pavement imaging has become a routine output from annual pavement assessment survey regimes across the world. Hitherto the traditional use of road pavement images in road condition assessme...Over the last 20 years road pavement imaging has become a routine output from annual pavement assessment survey regimes across the world. Hitherto the traditional use of road pavement images in road condition assessment has been crack detection, rather than direct analysis of image features such as aggregate loss, changes in surface texture or deterioration of road markings. Any attempt to assess pavement condition change from features in a sequence of such images captured months or years apart requires image registration. A method for registering road pavement images is presented that makes use of an affine transformation based on pseudo-features within images. An affine trans- formation is considered suitable for registering road pavement images because of the linear way in which pavements are surveyed. Pseudo feature points are found using a modified corner detector, and then matching points between reference and template im- ages established via a correlation analysis of pavement image texture. With 4 such points it is possible to establish an affine transformation between the images. The method is tested on pavement images captured on three UK sites between winter 2014/15 and 2015/16. The method successfully registered 98% of images captured on sites typical of the UK's strategic road network, and 65% of images captured on a site typical of the UK's minor road network.展开更多
Geometric distortion is known as one of the most difficult attacks to resist. Geometric distortion desynchronizes the location of the watermark and hence causes incorrect watermark detection. In this paper, we propose...Geometric distortion is known as one of the most difficult attacks to resist. Geometric distortion desynchronizes the location of the watermark and hence causes incorrect watermark detection. In this paper, we propose a geometrically invariant digital watermarking method for color images. In order to synchronize the location for watermark insertion and detection, we use a multi-scale Harris-Laplace detector, by which feature points of a color image can be extracted that are invariant to geometric distortions. Then, the self-adaptive local image region (LIR) detection based on the feature scale theory was considered for watermarking. At each local image region, the watermark is embedded after image normalization. By binding digital watermark with invariant image regions, resilience against geometric distortion can be readily obtained. Our method belongs to the category of blind watermarking techniques, because we do not need the original image during detection. Experimental results show that the proposed color image watermarking is not only invisible and robust against common signal processing such as sharpening, noise adding, and JPEG compression, but also robust against the geometric distortions such as rotation, translation, scaling, row or column removal, shearing, and local random bend.展开更多
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed...Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.展开更多
The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an...The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an inaccurate pose estimation or failed tracking.To address the challenge above,a new method of feature point matching is proposed in this paper,which combines the variable velocity model with the reverse optical flow method.First,the constant velocity model is extended to a new variable velocity model,and the expanded variable velocity model is used to provide the initial pixel shifting for the reverse optical flow method.Then the search range of feature points is accurately determined according to the results of the reverse optical flow method,thereby improving the accuracy and reliability of feature matching,with strengthened interframe tracking effects.Finally,we tested on TUM data set based on the RGB-D camera.Experimental results show that this method can reduce the probability of tracking failure and improve localization accuracy on SLAM(Simultaneous Localization and Mapping)systems.Compared with the traditional ORB-SLAM2,the test error of this method on each sequence in the TUM data set is significantly reduced,and the root mean square error is only 63.8%of the original system under the optimal condition.展开更多
The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l...The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.展开更多
With the rapid development of the machining and manufacturing industry,welding has been widely used in forming connections of structural parts.At present,manual methods are often used for welding and quality inspectio...With the rapid development of the machining and manufacturing industry,welding has been widely used in forming connections of structural parts.At present,manual methods are often used for welding and quality inspection,with low efficiency and unstable product quality.Due to the requirements of visual inspection of weld feature size,a visual inspection system for weld feature size based on line structured light(LSL)is designed and built in this paper.An adaptive light stripe sub-pixel center extraction algorithm and a feature point extraction algorithm for welding light stripe are proposed.The experiment results show that the detection error of the weld width is 0.216 mm,the detection error of the remaining height is 0.035 mm,the single measurement costs 109 ms,and the inspection stability and repeatability of the system is 1%.Our approach can meet the online detection requirements of practical applications.展开更多
To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machine...To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.展开更多
In this paper, a new content-based image watermarking scheme is proposed. The Harris-Laplace detector is adopted to extract feature points, which can survive a variety of attacks. The local characteristic regions (L...In this paper, a new content-based image watermarking scheme is proposed. The Harris-Laplace detector is adopted to extract feature points, which can survive a variety of attacks. The local characteristic regions (LCRs) are adaptively constructed based on scale-space theory. Then, the LCRs are mapped to geometrically invariant space by using image normalization technique. Finally, several copies of the digital watermark are embedded into the nonoverlapped LCRs by quantizing the magnitude vectors of discrete Fourier transform (DFT) coefficients. By binding a watermark with LCR, resilience against desynchronization attacks can be readily obtained. Simulation results show that the proposed scheme is invisible and robust against various attacks which includes common signals processing and desynchronization attacks.展开更多
The visual inspection is an economical and effective method for welding. For measuring the feature sizes of grooves,a method based on line structured light is presented. Firstly,an adaptive algorithm to extract the su...The visual inspection is an economical and effective method for welding. For measuring the feature sizes of grooves,a method based on line structured light is presented. Firstly,an adaptive algorithm to extract the subpixel centerline of structured light stripes is introduced to deal with the uneven width and grayscale distributions of laser stripes,which is based on the quadratic weighted grayscale centroid. By means of region-of-interest(ROI)division and image difference,an image preprocessing algorithm is developed for filtering noise and improving image quality. Furthermore,to acquire geometrical dimensions of various grooves and groove types precisely,the subpixel feature point extraction algorithm of grooves is designed. Finally, experimental results of feature size measuring show that the absolute error of measurement is 0.031—0.176 mm,and the relative error of measurement is 0.2%—3.6%.展开更多
The point pair feature(PPF)is widely used for 6D pose estimation.In this paper,we propose an efficient 6D pose estimation method based on the PPF framework.We introduce a well-targeted down-sampling strategy that focu...The point pair feature(PPF)is widely used for 6D pose estimation.In this paper,we propose an efficient 6D pose estimation method based on the PPF framework.We introduce a well-targeted down-sampling strategy that focuses on edge areas for efficient feature extraction for complex geometry.A pose hypothesis validation approach is proposed to resolve ambiguity due to symmetry by calculating the edge matching degree.We perform evaluations on two challenging datasets and one real-world collected dataset,demonstrating the superiority of our method for pose estimation for geometrically complex,occluded,symmetrical objects.We further validate our method by applying it to simulated punctures.展开更多
Isogeometric analysis(IGA)is introduced to establish the direct link between computer-aided design and analysis.It is commonly implemented by Galerkin formulations(isogeometric Galerkin,IGA-G)through the use of nonuni...Isogeometric analysis(IGA)is introduced to establish the direct link between computer-aided design and analysis.It is commonly implemented by Galerkin formulations(isogeometric Galerkin,IGA-G)through the use of nonuniform rational B-splines(NURBS)basis functions for geometric design and analysis.Another promising approach,isogeometric collocation(IGA-C),working directly with the strong form of the partial differential equation(PDE)over the physical domain defined by NURBS geometry,calculates the derivatives of the numerical solution at the chosen collocation points.In a typical IGA,the knot vector of the NURBS numerical solution is only determined by the physical domain.A new perspective on the IGAmethod is proposed in this study to improve the accuracy and convergence of the solution.Solving the PDE with IGA can be regarded as fitting the load function defined on the NURBS geometry(right-hand side)with derivatives of the NURBS numerical solution(left-hand side).Moreover,the design of the knot vector has a close relationship to theNURBS functions to be fitted in the area of data fitting in geometric design.Therefore,the detected feature points of the load function are integrated into the initial knot vector of the physical domainto construct thenewknot vector of thenumerical solution.Then,they are connected seamlessly with the IGA-C framework for its great potential combining the accuracy and smoothness merits with the computational efficiency,which we call isogeometric collocation by fitting load function(IGACL).In numerical experiments,we implement our method to solve 1D,2D,and 3D PDEs and demonstrate the improvement in accuracy by comparing it with the standard IGA-C method.We also verify the superiority in the accuracy of our knot selection scheme when employed in the IGA-G method,which we call isogeometric Galerkin by fitting load function(IGA-GL).展开更多
基金Supported by the National Natural Science Foundation of China(No.61771186)the Heilongjiang Provincial Natural Science Foundation of China(No.YQ2020F012)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2017125).
文摘Image matching refers to the process of matching two or more images obtained at different time,different sensors or different conditions through a large number of feature points in the image.At present,image matching is widely used in target recognition and tracking,indoor positioning and navigation.Local features missing,however,often occurs in color images taken in dark light,making the extracted feature points greatly reduced in number,so as to affect image matching and even fail the target recognition.An unsharp masking(USM)based denoising model is established and a local adaptive enhancement algorithm is proposed to achieve feature point compensation by strengthening local features of the dark image in order to increase amount of image information effectively.Fast library for approximate nearest neighbors(FLANN)and random sample consensus(RANSAC)are image matching algorithms.Experimental results show that the number of effective feature points obtained by the proposed algorithm from images in dark light environment is increased,and the accuracy of image matching can be improved obviously.
文摘Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms.
文摘In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can be considered as an extention of regular grid point based matching. It avoids the shortcome of grid point based matching. For example, with this method, we can avoid low or even no texture area where errors frequently appear in cross correlaton matching. In the mean while, it makes full use of some mature techniques such as probability relaxation, image pyramid and the like which have already been successfully used in grid point matching process. Application of the technique to DEM generaton in different regions proved that it is more reasonable and reliable.
基金The National Natural Science Foundation of China(No.51375087,51405203)the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2016139)
文摘Aming at the problem of the low accuracy of low dynamic vehicle velocity under the environment of uneven distribution of light intensity,an improved adaptive Kalman filter method for the velocity error estimate by the fusion of optical flow tracking and scale mvaiant feature transform(SIFT)is proposed.The algorithm introduces anonlinear fuzzy membership function and the filter residual for the noise covariance matrix in the adaptive adjustment process.In the process of calculating the velocity of the vehicle,the tracking and matching of the inter-frame displacement a d the vehicle velocity calculation a e carried out by using the optical fow tracing and the SIF'T methods,respectively.Meanwhile,the velocity difference between theoutputs of thesetwo methods is used as the observation of the improved adaptive Kalman filter.Finally,the velocity calculated by the optical fow method is corrected by using the velocity error estimate of the output of the modified adaptive Kalman filter.The results of semi-physical experiments show that the maximum velocityeror of the fusion algorithm is decreased by29%than that of the optical fow method,and the computation time is reduced by80%compared with the SIFT method.
文摘An algorithm for automatically extracting feature points is developed after the area of feature points in 2-dimensional (2D) imagebeing located by probability theory, correlated methods and criterion for abnormity. Feature points in 2D image can be extracted only by calculating standard deviation of gray within sampled pixels area in our approach statically. While extracting feature points, the limitation to confirm threshold by tentative method according to some a priori information on processing image can be avoided. It is proved that the proposed algorithm is valid and reliable by extracting feature points on actual natural images with abundant and weak texture, including multi-object with complex background, respectively. It can meet the demand of extracting feature points of 2D image automatically in machine vision system.
文摘During matching on feature point, gray correlation matching technology is utilized to extract multi-peaks as a coarse matching set. A pair of given corresponding reference points within the left and right images is used to calculate gradients of reference difference between the reference points and each feature point within the multi-peaks set. The unique correspondence is determined by criterion of minimal gradients of reference difference. The obtained correspondence is taken as a new pair of reference points to update the reference points continuously until all feature points in the left (or right) image being matched with the right (or left) image. The gradients of reference difference can be calculated easily by means of pre-setting a pair of obvious feature points in the left and right images as a pair of corresponding reference points. Besides, the efficiency of matching can be improved greatly by taking the obtained matching point as a new pair of reference points, and by updating the reference point continuously. It is proved that the proposed algorithm is valid and reliable by 3D reconstruction on two pairs of actual natural images with abundant and weak texture, respectively.
文摘<div style="text-align:justify;"> This paper is aiming to obtain an arm-root curve function performing the human arm-root size and shape realistically. A gypsum replica of upper arm for young male was made and scanned for extracting the 3D coordinates of 4 feature points of shoulder point, the anterior/posterior armpit point and the axillary point describing the real arm-root shape under the normalized definitions, and the 5 landmarks were confirmed additionally for improving the fitting precision. Then, the wholly and piecewise fitting of arm-root curve with 9 feature points and mark points in total were generated respectively based on least square polynomial fitting method. Comparing to the wholly fitting, the piecewise fitted function segmented by the line between anterior and posterior axillary points showed a high fitting degree of arm-root morphology with R-square of 1, the length difference between fitted curve and gypsum curve is 0.003 cm within error range. And it provided a basic curve model with standard feature points to simulate arm-root morphology realistically by curve fitting for accurate body measurement extraction. </div>
基金the National Natural Science Founda-tion(Nos.62063019 and 61763026)the Gansu Nat-ural Science Foundation Project(No.20JR10RA152)the Gansu Provincial Department of Educa-tion:Excellent Graduate“Innovation Star”Project(No.2021CXZX-507)。
文摘Aimed at the problems of a traditional ant colony algorithm,such as the path search direction and field of view,an inability to find the shortest path,a propensity toward deadlock and an unsmooth path,an ant colony algorithm for use in a new environment is proposed.First,the feature points of an obstacle are extracted to preprocess the grid map environment,which can avoid entering a trap and solve the deadlock problem.Second,these feature points are used as pathfinding access nodes to reduce the node access,with more moving directions to be selected,and the locations of the feature points to be selected determine the range of the pathfinding field of view.Then,based on the feature points,an unequal distribution of pheromones and a two-way parallel path search are used to improve the construction efficiency of the solution,an improved heuristic function is used to enhance the guiding role of the path search,and the pheromone volatilization coefficient is dynamically adjusted to avoid a premature convergence of the algorithm.Third,a Bezier curve is used to smooth the shortest path obtained.Finally,using grid maps with a different complexity and different scales,a simulation comparing the results of the proposed algorithm with those of traditional and other improved ant colony algorithms verifies its feasibility and superiority.
文摘Over the last 20 years road pavement imaging has become a routine output from annual pavement assessment survey regimes across the world. Hitherto the traditional use of road pavement images in road condition assessment has been crack detection, rather than direct analysis of image features such as aggregate loss, changes in surface texture or deterioration of road markings. Any attempt to assess pavement condition change from features in a sequence of such images captured months or years apart requires image registration. A method for registering road pavement images is presented that makes use of an affine transformation based on pseudo-features within images. An affine trans- formation is considered suitable for registering road pavement images because of the linear way in which pavements are surveyed. Pseudo feature points are found using a modified corner detector, and then matching points between reference and template im- ages established via a correlation analysis of pavement image texture. With 4 such points it is possible to establish an affine transformation between the images. The method is tested on pavement images captured on three UK sites between winter 2014/15 and 2015/16. The method successfully registered 98% of images captured on sites typical of the UK's strategic road network, and 65% of images captured on a site typical of the UK's minor road network.
基金the National Natural Science Foundation of China (Grant Nos. 60773031, 60873222)the Open Foundation of State Key Laboratory of Networking and Switching Technology of China (Grant No. SKLNST-2008-1-01)+2 种基金the Open Foundation of State Key Laboratory of Information Security of China (Grant No. 03-06)the Open Foundation of State Key Laboratory for Novel Software Technology of China (Grant No. A200702)Liaoning Research Project for Institutions of Higher Education of China (Grant No. 2008351)
文摘Geometric distortion is known as one of the most difficult attacks to resist. Geometric distortion desynchronizes the location of the watermark and hence causes incorrect watermark detection. In this paper, we propose a geometrically invariant digital watermarking method for color images. In order to synchronize the location for watermark insertion and detection, we use a multi-scale Harris-Laplace detector, by which feature points of a color image can be extracted that are invariant to geometric distortions. Then, the self-adaptive local image region (LIR) detection based on the feature scale theory was considered for watermarking. At each local image region, the watermark is embedded after image normalization. By binding digital watermark with invariant image regions, resilience against geometric distortion can be readily obtained. Our method belongs to the category of blind watermarking techniques, because we do not need the original image during detection. Experimental results show that the proposed color image watermarking is not only invisible and robust against common signal processing such as sharpening, noise adding, and JPEG compression, but also robust against the geometric distortions such as rotation, translation, scaling, row or column removal, shearing, and local random bend.
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.
基金This work was supported by The National Natural Science Foundation of China under Grant No.61304205 and NO.61502240The Natural Science Foundation of Jiangsu Province under Grant No.BK20191401 and No.BK20201136Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.SJCX21_0364 and No.SJCX21_0363.
文摘The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an inaccurate pose estimation or failed tracking.To address the challenge above,a new method of feature point matching is proposed in this paper,which combines the variable velocity model with the reverse optical flow method.First,the constant velocity model is extended to a new variable velocity model,and the expanded variable velocity model is used to provide the initial pixel shifting for the reverse optical flow method.Then the search range of feature points is accurately determined according to the results of the reverse optical flow method,thereby improving the accuracy and reliability of feature matching,with strengthened interframe tracking effects.Finally,we tested on TUM data set based on the RGB-D camera.Experimental results show that this method can reduce the probability of tracking failure and improve localization accuracy on SLAM(Simultaneous Localization and Mapping)systems.Compared with the traditional ORB-SLAM2,the test error of this method on each sequence in the TUM data set is significantly reduced,and the root mean square error is only 63.8%of the original system under the optimal condition.
文摘The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.
基金supported by the National Natural Science Foundation of China(No. 51975293)the Aeronautical Science Foundation of China(No. 2019ZD052010)
文摘With the rapid development of the machining and manufacturing industry,welding has been widely used in forming connections of structural parts.At present,manual methods are often used for welding and quality inspection,with low efficiency and unstable product quality.Due to the requirements of visual inspection of weld feature size,a visual inspection system for weld feature size based on line structured light(LSL)is designed and built in this paper.An adaptive light stripe sub-pixel center extraction algorithm and a feature point extraction algorithm for welding light stripe are proposed.The experiment results show that the detection error of the weld width is 0.216 mm,the detection error of the remaining height is 0.035 mm,the single measurement costs 109 ms,and the inspection stability and repeatability of the system is 1%.Our approach can meet the online detection requirements of practical applications.
基金National Natural Science Foundation of China(No.519705449)。
文摘To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.
基金This work was supported by Natural Science Foundation of Liaoning Province of China (No.20032100)Open Foundation of State Key Laboratory of Vision and Auditory Information Processing (Peking University) (No.0503)+2 种基金Natural Science Foundation of Dalian City of China (No.2006J23JH020)Open Foundation of Jiangsu Province Key Laboratory for Computer Information Processing Technology (Soocbow University)(No.KJS0602)Open Foundation of Key Laboratory of Image Processing and Image Communication (Nanjing University of Posts and Communications)(No.ZK205014).
文摘In this paper, a new content-based image watermarking scheme is proposed. The Harris-Laplace detector is adopted to extract feature points, which can survive a variety of attacks. The local characteristic regions (LCRs) are adaptively constructed based on scale-space theory. Then, the LCRs are mapped to geometrically invariant space by using image normalization technique. Finally, several copies of the digital watermark are embedded into the nonoverlapped LCRs by quantizing the magnitude vectors of discrete Fourier transform (DFT) coefficients. By binding a watermark with LCR, resilience against desynchronization attacks can be readily obtained. Simulation results show that the proposed scheme is invisible and robust against various attacks which includes common signals processing and desynchronization attacks.
基金supported by the National Natural Science Foundation of China(No. 51975293)the Aeronautical Science Foundation of China (No. 2019ZD052010)。
文摘The visual inspection is an economical and effective method for welding. For measuring the feature sizes of grooves,a method based on line structured light is presented. Firstly,an adaptive algorithm to extract the subpixel centerline of structured light stripes is introduced to deal with the uneven width and grayscale distributions of laser stripes,which is based on the quadratic weighted grayscale centroid. By means of region-of-interest(ROI)division and image difference,an image preprocessing algorithm is developed for filtering noise and improving image quality. Furthermore,to acquire geometrical dimensions of various grooves and groove types precisely,the subpixel feature point extraction algorithm of grooves is designed. Finally, experimental results of feature size measuring show that the absolute error of measurement is 0.031—0.176 mm,and the relative error of measurement is 0.2%—3.6%.
基金This work was supported in part by the National Key R&D Program of China(2018AAA0102200)National Natural Science Foundation of China(62132021,62102435,61902419,62002375,62002376)+2 种基金Natural Science Foundation of Hunan Province of China(2021JJ40696)Huxiang Youth Talent Support Program(2021RC3071)NUDT Research Grants(ZK19-30,ZK22-52).
文摘The point pair feature(PPF)is widely used for 6D pose estimation.In this paper,we propose an efficient 6D pose estimation method based on the PPF framework.We introduce a well-targeted down-sampling strategy that focuses on edge areas for efficient feature extraction for complex geometry.A pose hypothesis validation approach is proposed to resolve ambiguity due to symmetry by calculating the edge matching degree.We perform evaluations on two challenging datasets and one real-world collected dataset,demonstrating the superiority of our method for pose estimation for geometrically complex,occluded,symmetrical objects.We further validate our method by applying it to simulated punctures.
基金supported by the National Natural Science Foundation of China under Grant Nos.61872316,62272406,61932018the National Key R&D Plan of China under Grant No.2020YFB1708900.
文摘Isogeometric analysis(IGA)is introduced to establish the direct link between computer-aided design and analysis.It is commonly implemented by Galerkin formulations(isogeometric Galerkin,IGA-G)through the use of nonuniform rational B-splines(NURBS)basis functions for geometric design and analysis.Another promising approach,isogeometric collocation(IGA-C),working directly with the strong form of the partial differential equation(PDE)over the physical domain defined by NURBS geometry,calculates the derivatives of the numerical solution at the chosen collocation points.In a typical IGA,the knot vector of the NURBS numerical solution is only determined by the physical domain.A new perspective on the IGAmethod is proposed in this study to improve the accuracy and convergence of the solution.Solving the PDE with IGA can be regarded as fitting the load function defined on the NURBS geometry(right-hand side)with derivatives of the NURBS numerical solution(left-hand side).Moreover,the design of the knot vector has a close relationship to theNURBS functions to be fitted in the area of data fitting in geometric design.Therefore,the detected feature points of the load function are integrated into the initial knot vector of the physical domainto construct thenewknot vector of thenumerical solution.Then,they are connected seamlessly with the IGA-C framework for its great potential combining the accuracy and smoothness merits with the computational efficiency,which we call isogeometric collocation by fitting load function(IGACL).In numerical experiments,we implement our method to solve 1D,2D,and 3D PDEs and demonstrate the improvement in accuracy by comparing it with the standard IGA-C method.We also verify the superiority in the accuracy of our knot selection scheme when employed in the IGA-G method,which we call isogeometric Galerkin by fitting load function(IGA-GL).