Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,du...Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,due to the high similarity between the man-made targets near shore and inshore ships,the classical methods are unable to achieve effective detection of inshore ships.To mitigate the influence of onshore ship-like objects,this paper proposes an inshore ship detection method in SAR images by using hybrid features.Firstly,the sea-land segmentation is applied in the pre-processing to exclude obvious land regions from SAR images.Then,a CNN model is designed to extract deep features for identifying potential ship targets in both inshore and offshore water.On this basis,the high-energy point number of amplitude spectrum is further introduced as an important and delicate feature to suppress false alarms left.Finally,to verify the effectiveness of the proposed method,numerical and comparative studies are carried out in experiments on Sentinel-1 SAR images.展开更多
Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body imag...Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms.展开更多
In this paper, we present a robust subneighborhoods selection technique for feature detection on point clouds scattered over a piecewise smooth surface. The proposed method first identifies all potential features usin...In this paper, we present a robust subneighborhoods selection technique for feature detection on point clouds scattered over a piecewise smooth surface. The proposed method first identifies all potential features using covariance analysis of the local- neighborhoods. To further extract the accurate features from potential features, Gabriel triangles are created in local neighborhoods of each potential feature vertex. These triangles tightly attach to underlying surface and effectively reflect the local geometry struc- ture. Applying a shared nearest neighbor clustering algorithm on ~ 1 reconstructed normals of created triangle set, we classify the lo- cal neighborhoods of the potential feature vertex into multiple subneighborhoods. Each subneighborhood indicates a piecewise smooth surface. The final feature vertex is identified by checking whether it is locating on the intersection of the multiple surfaces. An advantage of this framework is that it is not only robust to noise, but also insensitive to the size of selected neighborhoods. Ex- perimental results on a variety of models are used to illustrate the effectiveness and robustness of our method.展开更多
For traditional loop closure detection algorithm,only using the vectorization of point features to build visual dictionary is likely to cause perceptual ambiguity.In addition,when scene lacks texture information,the n...For traditional loop closure detection algorithm,only using the vectorization of point features to build visual dictionary is likely to cause perceptual ambiguity.In addition,when scene lacks texture information,the number of point features extracted from it will be small and cannot describe the image effectively.Therefore,this paper proposes a loop closure detection algorithm which combines point and line features.To better recognize scenes with hybrid features,the building process of traditional dictionary tree is improved in the paper.The features with different flag bits were clustered separately to construct a mixed dictionary tree and word vectors that can represent the hybrid features,which can better describe structure and texture information of scene.To ensure that the similarity score between images is more reasonable,different similarity coefficients were set in different scenes,and the candidate frame with the highest similarity score was selected as the candidate closed loop.Experiments show that the point line comprehensive feature was superior to the single feature in the structured scene and the strong texture scene,the recall rate of the proposed algorithm was higher than the state of the art methods when the accuracy is 100%,and the algorithm can be applied to more diverse environments.展开更多
To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machine...To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.展开更多
The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.I...The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.Inspired by the great progress of Transformer,we propose a novel general and robust voxel feature encoder for 3D object detection based on the traditional Transformer.We first investigate the permutation invariance of sequence data of the self-attention and apply it to point cloud processing.Then we construct a voxel feature layer based on the self-attention to adaptively learn local and robust context of a voxel according to the spatial relationship and context information exchanging between all points within the voxel.Lastly,we construct a general voxel feature learning framework with the voxel feature layer as the core for 3D object detection.The voxel feature with Transformer(VFT)can be plugged into any other voxel-based 3D object detection framework easily,and serves as the backbone for voxel feature extractor.Experiments results on the KITTI dataset demonstrate that our method achieves the state-of-the-art performance on 3D object detection.展开更多
Anchor-based detectors are widely used in object detection.To improve the accuracy of object detection,multiple anchor boxes are intensively placed on the input image,yet.Most of which are invalid.Although the anchor-...Anchor-based detectors are widely used in object detection.To improve the accuracy of object detection,multiple anchor boxes are intensively placed on the input image,yet.Most of which are invalid.Although the anchor-free method can reduce the number of useless anchor boxes,the invalid ones still occupy a high proportion.On this basis,this paper proposes a multiscale center point object detection method based on parallel network to further reduce the number of useless anchor boxes.This study adopts the parallel network architecture of hourglass-104 and darknet-53 of which the first one outputs heatmaps to generate the center point for object feature location on the output attribute feature map of darknet-53.Combining feature pyramid and CIoU loss function,this algorithm is trained and tested on MSCOCO dataset,increasing the detection rate of target location and the accuracy rate of small object detection.Though resembling the state-of-the-art two-stage detectors in overall object detection accuracy,this algorithm is superior in speed.展开更多
为了解决点云处理过程中空间信息损失的问题,同时在融合过程中最大程度地提取可见光图像的纹理信息,本文提出了一种基于特征切片的激光点云与可见光图像融合车辆检测方法(FVOIRGAN-Detection)。在CrossGAN-Detection方法中加入了FVOI(Fr...为了解决点云处理过程中空间信息损失的问题,同时在融合过程中最大程度地提取可见光图像的纹理信息,本文提出了一种基于特征切片的激光点云与可见光图像融合车辆检测方法(FVOIRGAN-Detection)。在CrossGAN-Detection方法中加入了FVOI(Front View Based on Original Information)的点云处理思路,将点云投影到前视角度并把原始点云信息的各个维度切片为特征通道,在不降低网络性能的情况下显著提高点云信息利用效率。并且引入了相对概率的思想,采用鉴别器鉴别图像的相对真实概率替代绝对真实概率,使得融合图像提取的纹理信息更加接近真实的纹理信息。在KITTI数据集上进行检测性能实验验证结果表明,本文方法在容易、中等和困难三个类别中的AP指标分别达到97.67%、87.86%和79.03%。在光线受限的场景下,AP指标达到了88.49%,与CrossGAN-Detection方法相比提高了2.37%,提高了目标检测的性能。展开更多
Human body feature extraction based on 2D images provides an efficient method for many applications, e.g. non-contact body size measurements, constructing 3D human model and recognizing human actions. In this paper a ...Human body feature extraction based on 2D images provides an efficient method for many applications, e.g. non-contact body size measurements, constructing 3D human model and recognizing human actions. In this paper a systematic approach is proposed to detect feature points of human body automatically from its front and side images. Firstly, an efficient approach for silhouette and contour detection is used to represent the contour curves of a human body shape with Freeman’s 8-connected chain codes. The contour curves are considered as a number of segments connected together. Then, a series of feature points on human body are extracted based on the specified rules by measuring the differences between the directions of the segments. In total, 101 feature points with clearly geometric properties (that rather accurately reflect the bump or turning of the contours) are extracted automatically, including 27 points corresponding to the definitions of the landmarks about garment measurements. Finally, the proposed approach was tested on ten human subjects and the entire 101 feature points with specific geography geometrical characteristics were correctly extracted, indicating an effective and robust performance.展开更多
Medical equipments related to life safety of human, it is important to detect by a high precise method. Image mosaic which based on Harris corner operator is a commonly used method in this area;Harris operator has low...Medical equipments related to life safety of human, it is important to detect by a high precise method. Image mosaic which based on Harris corner operator is a commonly used method in this area;Harris operator has low calculation burden, it is simple and stable, so it is more effective comparing with other feature point extracted operators. But in this algorithm, corner points can only be detected in a single-scale, there may be losing information of corner points, causing corner point location offset, extracting false corner points because of noise. In order to solve this question, the acquired images should be processed by dilation and erosion operation firstly, then do image mosaic. Results show that image noise can be eliminated effectively after those morphological processes, as well as the false positive noise generated by image glitch. The success rate of image mosaic and detection accuracy can be greatly improved through the Morphology-Harris operator. Measurement of precision instruments which based on this new method will improve the measurement accuracy, and the research in this area will promote the further development of machine vision technology.展开更多
针对现有三维目标检测算法对存在遮挡及距离较远目标检测效果差的问题,以基于点云的三维目标检测算法(3D object proposal generation and detection from point cloud,PointRCNN)为基础,对网络进行改进,提高三维目标检测精度。对区域...针对现有三维目标检测算法对存在遮挡及距离较远目标检测效果差的问题,以基于点云的三维目标检测算法(3D object proposal generation and detection from point cloud,PointRCNN)为基础,对网络进行改进,提高三维目标检测精度。对区域生成网络(region proposal network,RPN)获取的提议区域(region of interest,ROI)体素化处理,同时构建不同尺度的区域金字塔来捕获更加广泛的兴趣点;加入点云Transformer模块来增强对网格中心点局部特征的学习;在网络中加入球查询半径预测模块,使得模型可以根据点云密度自适应调整球查询的范围。最后,对所提算法的有效性进行了试验验证,在KITTI数据集下对模型的性能进行评估测试,同时设计相应的消融试验验证模型中各模块的有效性。展开更多
基金Aeronautical Science Foundation of China(No.2018ZC51022)。
文摘Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,due to the high similarity between the man-made targets near shore and inshore ships,the classical methods are unable to achieve effective detection of inshore ships.To mitigate the influence of onshore ship-like objects,this paper proposes an inshore ship detection method in SAR images by using hybrid features.Firstly,the sea-land segmentation is applied in the pre-processing to exclude obvious land regions from SAR images.Then,a CNN model is designed to extract deep features for identifying potential ship targets in both inshore and offshore water.On this basis,the high-energy point number of amplitude spectrum is further introduced as an important and delicate feature to suppress false alarms left.Finally,to verify the effectiveness of the proposed method,numerical and comparative studies are carried out in experiments on Sentinel-1 SAR images.
文摘Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms.
基金Supported by National Natural Science Foundation of China(No.u0935004,61173102)the Fundamental Research Funds for the Central Unibersities(DUT11SX08)
文摘In this paper, we present a robust subneighborhoods selection technique for feature detection on point clouds scattered over a piecewise smooth surface. The proposed method first identifies all potential features using covariance analysis of the local- neighborhoods. To further extract the accurate features from potential features, Gabriel triangles are created in local neighborhoods of each potential feature vertex. These triangles tightly attach to underlying surface and effectively reflect the local geometry struc- ture. Applying a shared nearest neighbor clustering algorithm on ~ 1 reconstructed normals of created triangle set, we classify the lo- cal neighborhoods of the potential feature vertex into multiple subneighborhoods. Each subneighborhood indicates a piecewise smooth surface. The final feature vertex is identified by checking whether it is locating on the intersection of the multiple surfaces. An advantage of this framework is that it is not only robust to noise, but also insensitive to the size of selected neighborhoods. Ex- perimental results on a variety of models are used to illustrate the effectiveness and robustness of our method.
基金the National Natural Science Foundation of China(Grant No.61105083).
文摘For traditional loop closure detection algorithm,only using the vectorization of point features to build visual dictionary is likely to cause perceptual ambiguity.In addition,when scene lacks texture information,the number of point features extracted from it will be small and cannot describe the image effectively.Therefore,this paper proposes a loop closure detection algorithm which combines point and line features.To better recognize scenes with hybrid features,the building process of traditional dictionary tree is improved in the paper.The features with different flag bits were clustered separately to construct a mixed dictionary tree and word vectors that can represent the hybrid features,which can better describe structure and texture information of scene.To ensure that the similarity score between images is more reasonable,different similarity coefficients were set in different scenes,and the candidate frame with the highest similarity score was selected as the candidate closed loop.Experiments show that the point line comprehensive feature was superior to the single feature in the structured scene and the strong texture scene,the recall rate of the proposed algorithm was higher than the state of the art methods when the accuracy is 100%,and the algorithm can be applied to more diverse environments.
基金National Natural Science Foundation of China(No.519705449)。
文摘To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.
基金National Natural Science Foundation of China(No.61806006)Innovation Program for Graduate of Jiangsu Province(No.KYLX160-781)University Superior Discipline Construction Project of Jiangsu Province。
文摘The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.Inspired by the great progress of Transformer,we propose a novel general and robust voxel feature encoder for 3D object detection based on the traditional Transformer.We first investigate the permutation invariance of sequence data of the self-attention and apply it to point cloud processing.Then we construct a voxel feature layer based on the self-attention to adaptively learn local and robust context of a voxel according to the spatial relationship and context information exchanging between all points within the voxel.Lastly,we construct a general voxel feature learning framework with the voxel feature layer as the core for 3D object detection.The voxel feature with Transformer(VFT)can be plugged into any other voxel-based 3D object detection framework easily,and serves as the backbone for voxel feature extractor.Experiments results on the KITTI dataset demonstrate that our method achieves the state-of-the-art performance on 3D object detection.
文摘Anchor-based detectors are widely used in object detection.To improve the accuracy of object detection,multiple anchor boxes are intensively placed on the input image,yet.Most of which are invalid.Although the anchor-free method can reduce the number of useless anchor boxes,the invalid ones still occupy a high proportion.On this basis,this paper proposes a multiscale center point object detection method based on parallel network to further reduce the number of useless anchor boxes.This study adopts the parallel network architecture of hourglass-104 and darknet-53 of which the first one outputs heatmaps to generate the center point for object feature location on the output attribute feature map of darknet-53.Combining feature pyramid and CIoU loss function,this algorithm is trained and tested on MSCOCO dataset,increasing the detection rate of target location and the accuracy rate of small object detection.Though resembling the state-of-the-art two-stage detectors in overall object detection accuracy,this algorithm is superior in speed.
文摘为了解决点云处理过程中空间信息损失的问题,同时在融合过程中最大程度地提取可见光图像的纹理信息,本文提出了一种基于特征切片的激光点云与可见光图像融合车辆检测方法(FVOIRGAN-Detection)。在CrossGAN-Detection方法中加入了FVOI(Front View Based on Original Information)的点云处理思路,将点云投影到前视角度并把原始点云信息的各个维度切片为特征通道,在不降低网络性能的情况下显著提高点云信息利用效率。并且引入了相对概率的思想,采用鉴别器鉴别图像的相对真实概率替代绝对真实概率,使得融合图像提取的纹理信息更加接近真实的纹理信息。在KITTI数据集上进行检测性能实验验证结果表明,本文方法在容易、中等和困难三个类别中的AP指标分别达到97.67%、87.86%和79.03%。在光线受限的场景下,AP指标达到了88.49%,与CrossGAN-Detection方法相比提高了2.37%,提高了目标检测的性能。
文摘Human body feature extraction based on 2D images provides an efficient method for many applications, e.g. non-contact body size measurements, constructing 3D human model and recognizing human actions. In this paper a systematic approach is proposed to detect feature points of human body automatically from its front and side images. Firstly, an efficient approach for silhouette and contour detection is used to represent the contour curves of a human body shape with Freeman’s 8-connected chain codes. The contour curves are considered as a number of segments connected together. Then, a series of feature points on human body are extracted based on the specified rules by measuring the differences between the directions of the segments. In total, 101 feature points with clearly geometric properties (that rather accurately reflect the bump or turning of the contours) are extracted automatically, including 27 points corresponding to the definitions of the landmarks about garment measurements. Finally, the proposed approach was tested on ten human subjects and the entire 101 feature points with specific geography geometrical characteristics were correctly extracted, indicating an effective and robust performance.
文摘Medical equipments related to life safety of human, it is important to detect by a high precise method. Image mosaic which based on Harris corner operator is a commonly used method in this area;Harris operator has low calculation burden, it is simple and stable, so it is more effective comparing with other feature point extracted operators. But in this algorithm, corner points can only be detected in a single-scale, there may be losing information of corner points, causing corner point location offset, extracting false corner points because of noise. In order to solve this question, the acquired images should be processed by dilation and erosion operation firstly, then do image mosaic. Results show that image noise can be eliminated effectively after those morphological processes, as well as the false positive noise generated by image glitch. The success rate of image mosaic and detection accuracy can be greatly improved through the Morphology-Harris operator. Measurement of precision instruments which based on this new method will improve the measurement accuracy, and the research in this area will promote the further development of machine vision technology.
文摘针对现有三维目标检测算法对存在遮挡及距离较远目标检测效果差的问题,以基于点云的三维目标检测算法(3D object proposal generation and detection from point cloud,PointRCNN)为基础,对网络进行改进,提高三维目标检测精度。对区域生成网络(region proposal network,RPN)获取的提议区域(region of interest,ROI)体素化处理,同时构建不同尺度的区域金字塔来捕获更加广泛的兴趣点;加入点云Transformer模块来增强对网格中心点局部特征的学习;在网络中加入球查询半径预测模块,使得模型可以根据点云密度自适应调整球查询的范围。最后,对所提算法的有效性进行了试验验证,在KITTI数据集下对模型的性能进行评估测试,同时设计相应的消融试验验证模型中各模块的有效性。