期刊文献+
共找到8,098篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
1
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection 被引量:1
2
作者 Deng Yang Chong Zhou +2 位作者 Xuemeng Wei Zhikun Chen Zheng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1563-1593,共31页
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel... In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA. 展开更多
关键词 Multi-objective optimization whale optimization algorithm multi-strategy feature selection
下载PDF
A Heuristic Radiomics Feature Selection Method Based on Frequency Iteration and Multi-Supervised Training Mode
3
作者 Zhigao Zeng Aoting Tang +2 位作者 Shengqiu Yi Xinpan Yuan Yanhui Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2277-2293,共17页
Radiomics is a non-invasive method for extracting quantitative and higher-dimensional features from medical images for diagnosis.It has received great attention due to its huge application prospects in recent years.We... Radiomics is a non-invasive method for extracting quantitative and higher-dimensional features from medical images for diagnosis.It has received great attention due to its huge application prospects in recent years.We can know that the number of features selected by the existing radiomics feature selectionmethods is basically about ten.In this paper,a heuristic feature selection method based on frequency iteration and multiple supervised training mode is proposed.Based on the combination between features,it decomposes all features layer by layer to select the optimal features for each layer,then fuses the optimal features to form a local optimal group layer by layer and iterates to the global optimal combination finally.Compared with the currentmethod with the best prediction performance in the three data sets,thismethod proposed in this paper can reduce the number of features fromabout ten to about three without losing classification accuracy and even significantly improving classification accuracy.The proposed method has better interpretability and generalization ability,which gives it great potential in the feature selection of radiomics. 展开更多
关键词 Radiomics feature selection machine learning METAHEURISTIC
下载PDF
A Feature Selection Method Based on Hybrid Dung Beetle Optimization Algorithm and Slap Swarm Algorithm
4
作者 Wei Liu Tengteng Ren 《Computers, Materials & Continua》 SCIE EI 2024年第8期2979-3000,共22页
Feature Selection(FS)is a key pre-processing step in pattern recognition and data mining tasks,which can effectively avoid the impact of irrelevant and redundant features on the performance of classification models.In... Feature Selection(FS)is a key pre-processing step in pattern recognition and data mining tasks,which can effectively avoid the impact of irrelevant and redundant features on the performance of classification models.In recent years,meta-heuristic algorithms have been widely used in FS problems,so a Hybrid Binary Chaotic Salp Swarm Dung Beetle Optimization(HBCSSDBO)algorithm is proposed in this paper to improve the effect of FS.In this hybrid algorithm,the original continuous optimization algorithm is converted into binary form by the S-type transfer function and applied to the FS problem.By combining the K nearest neighbor(KNN)classifier,the comparative experiments for FS are carried out between the proposed method and four advanced meta-heuristic algorithms on 16 UCI(University of California,Irvine)datasets.Seven evaluation metrics such as average adaptation,average prediction accuracy,and average running time are chosen to judge and compare the algorithms.The selected dataset is also discussed by categorizing it into three dimensions:high,medium,and low dimensions.Experimental results show that the HBCSSDBO feature selection method has the ability to obtain a good subset of features while maintaining high classification accuracy,shows better optimization performance.In addition,the results of statistical tests confirm the significant validity of the method. 展开更多
关键词 feature selection dung beetle optimization KNN transfer function HBCSSDBO
下载PDF
Multi-Objective Equilibrium Optimizer for Feature Selection in High-Dimensional English Speech Emotion Recognition
5
作者 Liya Yue Pei Hu +1 位作者 Shu-Chuan Chu Jeng-Shyang Pan 《Computers, Materials & Continua》 SCIE EI 2024年第2期1957-1975,共19页
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is ext... Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER. 展开更多
关键词 Speech emotion recognition filter-wrapper HIGH-DIMENSIONAL feature selection equilibrium optimizer MULTI-OBJECTIVE
下载PDF
Data-driven prediction of dimensionless quantities for semi-infinite target penetration by integrating machine-learning and feature selection methods
6
作者 Qingqing Chen Xinyu Zhang +2 位作者 Zhiyong Wang Jie Zhang Zhihua Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期105-124,共20页
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ... This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated. 展开更多
关键词 Data-driven dimensional analysis PENETRATION Semi-infinite metal target Dimensionless numbers feature selection
下载PDF
A Proposed Feature Selection Particle Swarm Optimization Adaptation for Intelligent Logistics--A Supply Chain Backlog Elimination Framework
7
作者 Yasser Hachaichi Ayman E.Khedr Amira M.Idrees 《Computers, Materials & Continua》 SCIE EI 2024年第6期4081-4105,共25页
The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,a... The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research. 展开更多
关键词 Optimization particle swarm optimization algorithm feature selection LOGISTICS supply chain management backlogs
下载PDF
Suboptimal Feature Selection Techniques for Effective Malicious Traffic Detection on Lightweight Devices
8
作者 So-Eun Jeon Ye-Sol Oh +1 位作者 Yeon-Ji Lee Il-Gu Lee 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1669-1687,共19页
With the advancement of wireless network technology,vast amounts of traffic have been generated,and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated.While signatu... With the advancement of wireless network technology,vast amounts of traffic have been generated,and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated.While signature-based detection methods,static analysis,and dynamic analysis techniques have been previously explored for malicious traffic detection,they have limitations in identifying diversified malware traffic patterns.Recent research has been focused on the application of machine learning to detect these patterns.However,applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process.In this study,we examined methods for effectively utilizing machine learning-based malicious traffic detection approaches for lightweight devices.We introduced the suboptimal feature selection model(SFSM),a feature selection technique designed to reduce complexity while maintaining the effectiveness of malicious traffic detection.Detection performance was evaluated on various malicious traffic,benign,exploits,and generic,using the UNSW-NB15 dataset and SFSM sub-optimized hyperparameters for feature selection and narrowed the search scope to encompass all features.SFSM improved learning performance while minimizing complexity by considering feature selection and exhaustive search as two steps,a problem not considered in conventional models.Our experimental results showed that the detection accuracy was improved by approximately 20%compared to the random model,and the reduction in accuracy compared to the greedy model,which performs an exhaustive search on all features,was kept within 6%.Additionally,latency and complexity were reduced by approximately 96%and 99.78%,respectively,compared to the greedy model.This study demonstrates that malicious traffic can be effectively detected even in lightweight device environments.SFSM verified the possibility of detecting various attack traffic on lightweight devices. 展开更多
关键词 feature selection lightweight device machine learning Internet of Things malicious traffic
下载PDF
Multi-Binary Classifiers Using Optimal Feature Selection for Memory-Saving Intrusion Detection Systems
9
作者 Ye-Seul Kil Yu-Ran Jeon +1 位作者 Sun-Jin Lee Il-Gu Lee 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1473-1493,共21页
With the rise of remote work and the digital industry,advanced cyberattacks have become more diverse and complex in terms of attack types and characteristics,rendering them difficult to detect with conventional intrus... With the rise of remote work and the digital industry,advanced cyberattacks have become more diverse and complex in terms of attack types and characteristics,rendering them difficult to detect with conventional intrusion detection methods.Signature-based intrusion detection methods can be used to detect attacks;however,they cannot detect new malware.Endpoint detection and response(EDR)tools are attracting attention as a means of detecting attacks on endpoints in real-time to overcome the limitations of signature-based intrusion detection techniques.However,EDR tools are restricted by the continuous generation of unnecessary logs,resulting in poor detection performance and memory efficiency.Machine learning-based intrusion detection techniques for responding to advanced cyberattacks are memory intensive,using numerous features;they lack optimal feature selection for each attack type.To overcome these limitations,this study proposes a memory-efficient intrusion detection approach incorporating multi-binary classifiers using optimal feature selection.The proposed model detects multiple types of malicious attacks using parallel binary classifiers with optimal features for each attack type.The experimental results showed a 2.95%accuracy improvement and an 88.05%memory reduction using only six features compared to a model with 18 features.Furthermore,compared to a conventional multi-classification model with simple feature selection based on permutation importance,the accuracy improved by 11.67%and the memory usage decreased by 44.87%.The proposed scheme demonstrates that effective intrusion detection is achievable with minimal features,making it suitable for memory-limited mobile and Internet of Things devices. 展开更多
关键词 Endpoint detection and response feature selection machine learning malware detection
下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques
10
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde feature selection Support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
下载PDF
Improved Harris Hawks Algorithm and Its Application in Feature Selection
11
作者 Qianqian Zhang Yingmei Li +1 位作者 Jianjun Zhan Shan Chen 《Computers, Materials & Continua》 SCIE EI 2024年第10期1251-1273,共23页
This research focuses on improving the Harris’Hawks Optimization algorithm(HHO)by tackling several of its shortcomings,including insufficient population diversity,an imbalance in exploration vs.exploitation,and a lac... This research focuses on improving the Harris’Hawks Optimization algorithm(HHO)by tackling several of its shortcomings,including insufficient population diversity,an imbalance in exploration vs.exploitation,and a lack of thorough exploitation depth.To tackle these shortcomings,it proposes enhancements from three distinct perspectives:an initialization technique for populations grounded in opposition-based learning,a strategy for updating escape energy factors to improve the equilibrium between exploitation and exploration,and a comprehensive exploitation approach that utilizes variable neighborhood search along with mutation operators.The effectiveness of the Improved Harris Hawks Optimization algorithm(IHHO)is assessed by comparing it to five leading algorithms across 23 benchmark test functions.Experimental findings indicate that the IHHO surpasses several contemporary algorithms its problem-solving capabilities.Additionally,this paper introduces a feature selection method leveraging the IHHO algorithm(IHHO-FS)to address challenges such as low efficiency in feature selection and high computational costs(time to find the optimal feature combination and model response time)associated with high-dimensional datasets.Comparative analyses between IHHO-FS and six other advanced feature selection methods are conducted across eight datasets.The results demonstrate that IHHO-FS significantly reduces the computational costs associated with classification models by lowering data dimensionality,while also enhancing the efficiency of feature selection.Furthermore,IHHO-FS shows strong competitiveness relative to numerous algorithms. 展开更多
关键词 HHO IHHO population diversity energy factor update strategy deep exploitation strategy feature selection
下载PDF
Video-Based Deception Detection with Non-Contact Heart Rate Monitoring and Multi-Modal Feature Selection
12
作者 Yanfeng Li Jincheng Bian +1 位作者 Yiqun Gao Rencheng Song 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期175-185,共11页
Deception detection plays a crucial role in criminal investigation.Videos contain a wealth of information regarding apparent and physiological changes in individuals,and thus can serve as an effective means of decepti... Deception detection plays a crucial role in criminal investigation.Videos contain a wealth of information regarding apparent and physiological changes in individuals,and thus can serve as an effective means of deception detection.In this paper,we investigate video-based deception detection considering both apparent visual features such as eye gaze,head pose and facial action unit(AU),and non-contact heart rate detected by remote photoplethysmography(rPPG)technique.Multiple wrapper-based feature selection methods combined with the K-nearest neighbor(KNN)and support vector machine(SVM)classifiers are employed to screen the most effective features for deception detection.We evaluate the performance of the proposed method on both a self-collected physiological-assisted visual deception detection(PV3D)dataset and a public bag-oflies(BOL)dataset.Experimental results demonstrate that the SVM classifier with symbiotic organisms search(SOS)feature selection yields the best overall performance,with an area under the curve(AUC)of 83.27%and accuracy(ACC)of 83.33%for PV3D,and an AUC of 71.18%and ACC of 70.33%for BOL.This demonstrates the stability and effectiveness of the proposed method in video-based deception detection tasks. 展开更多
关键词 deception detection apparent visual features remote photoplethysmography non-contact heart rate feature selection
下载PDF
Ensemble Filter-Wrapper Text Feature Selection Methods for Text Classification
13
作者 Oluwaseun Peter Ige Keng Hoon Gan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1847-1865,共19页
Feature selection is a crucial technique in text classification for improving the efficiency and effectiveness of classifiers or machine learning techniques by reducing the dataset’s dimensionality.This involves elim... Feature selection is a crucial technique in text classification for improving the efficiency and effectiveness of classifiers or machine learning techniques by reducing the dataset’s dimensionality.This involves eliminating irrelevant,redundant,and noisy features to streamline the classification process.Various methods,from single feature selection techniques to ensemble filter-wrapper methods,have been used in the literature.Metaheuristic algorithms have become popular due to their ability to handle optimization complexity and the continuous influx of text documents.Feature selection is inherently multi-objective,balancing the enhancement of feature relevance,accuracy,and the reduction of redundant features.This research presents a two-fold objective for feature selection.The first objective is to identify the top-ranked features using an ensemble of three multi-univariate filter methods:Information Gain(Infogain),Chi-Square(Chi^(2)),and Analysis of Variance(ANOVA).This aims to maximize feature relevance while minimizing redundancy.The second objective involves reducing the number of selected features and increasing accuracy through a hybrid approach combining Artificial Bee Colony(ABC)and Genetic Algorithms(GA).This hybrid method operates in a wrapper framework to identify the most informative subset of text features.Support Vector Machine(SVM)was employed as the performance evaluator for the proposed model,tested on two high-dimensional multiclass datasets.The experimental results demonstrated that the ensemble filter combined with the ABC+GA hybrid approach is a promising solution for text feature selection,offering superior performance compared to other existing feature selection algorithms. 展开更多
关键词 Metaheuristic algorithms text classification multi-univariate filter feature selection ensemble filter-wrapper techniques
下载PDF
Exploring Sequential Feature Selection in Deep Bi-LSTM Models for Speech Emotion Recognition
14
作者 Fatma Harby Mansor Alohali +1 位作者 Adel Thaljaoui Amira Samy Talaat 《Computers, Materials & Continua》 SCIE EI 2024年第2期2689-2719,共31页
Machine Learning(ML)algorithms play a pivotal role in Speech Emotion Recognition(SER),although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state.The examination of the emotiona... Machine Learning(ML)algorithms play a pivotal role in Speech Emotion Recognition(SER),although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state.The examination of the emotional states of speakers holds significant importance in a range of real-time applications,including but not limited to virtual reality,human-robot interaction,emergency centers,and human behavior assessment.Accurately identifying emotions in the SER process relies on extracting relevant information from audio inputs.Previous studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients(MFCCs)due to their ability to capture the periodic nature of audio signals effectively.Although these traits may improve their ability to perceive and interpret emotional depictions appropriately,MFCCS has some limitations.So this study aims to tackle the aforementioned issue by systematically picking multiple audio cues,enhancing the classifier model’s efficacy in accurately discerning human emotions.The utilized dataset is taken from the EMO-DB database,preprocessing input speech is done using a 2D Convolution Neural Network(CNN)involves applying convolutional operations to spectrograms as they afford a visual representation of the way the audio signal frequency content changes over time.The next step is the spectrogram data normalization which is crucial for Neural Network(NN)training as it aids in faster convergence.Then the five auditory features MFCCs,Chroma,Mel-Spectrogram,Contrast,and Tonnetz are extracted from the spectrogram sequentially.The attitude of feature selection is to retain only dominant features by excluding the irrelevant ones.In this paper,the Sequential Forward Selection(SFS)and Sequential Backward Selection(SBS)techniques were employed for multiple audio cues features selection.Finally,the feature sets composed from the hybrid feature extraction methods are fed into the deep Bidirectional Long Short Term Memory(Bi-LSTM)network to discern emotions.Since the deep Bi-LSTM can hierarchically learn complex features and increases model capacity by achieving more robust temporal modeling,it is more effective than a shallow Bi-LSTM in capturing the intricate tones of emotional content existent in speech signals.The effectiveness and resilience of the proposed SER model were evaluated by experiments,comparing it to state-of-the-art SER techniques.The results indicated that the model achieved accuracy rates of 90.92%,93%,and 92%over the Ryerson Audio-Visual Database of Emotional Speech and Song(RAVDESS),Berlin Database of Emotional Speech(EMO-DB),and The Interactive Emotional Dyadic Motion Capture(IEMOCAP)datasets,respectively.These findings signify a prominent enhancement in the ability to emotional depictions identification in speech,showcasing the potential of the proposed model in advancing the SER field. 展开更多
关键词 Artificial intelligence application multi features sequential selection speech emotion recognition deep Bi-LSTM
下载PDF
Multi-Label Feature Selection Based on Improved Ant Colony Optimization Algorithm with Dynamic Redundancy and Label Dependence
15
作者 Ting Cai Chun Ye +5 位作者 Zhiwei Ye Ziyuan Chen Mengqing Mei Haichao Zhang Wanfang Bai Peng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1157-1175,共19页
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi... The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper. 展开更多
关键词 Multi-label feature selection ant colony optimization algorithm dynamic redundancy high-dimensional data label correlation
下载PDF
Performance Analysis of Machine Learning-Based Intrusion Detection with Hybrid Feature Selection
16
作者 Mohammad Al-Omari Qasem Abu Al-Haija 《Computer Systems Science & Engineering》 2024年第6期1537-1555,共19页
More businesses are deploying powerful Intrusion Detection Systems(IDS)to secure their data and physical assets.Improved cyber-attack detection and prevention in these systems requires machine learning(ML)approaches.T... More businesses are deploying powerful Intrusion Detection Systems(IDS)to secure their data and physical assets.Improved cyber-attack detection and prevention in these systems requires machine learning(ML)approaches.This paper examines a cyber-attack prediction system combining feature selection(FS)and ML.Our technique’s foundation was based on Correlation Analysis(CA),Mutual Information(MI),and recursive feature reduction with cross-validation.To optimize the IDS performance,the security features must be carefully selected from multiple-dimensional datasets,and our hybrid FS technique must be extended to validate our methodology using the improved UNSW-NB 15 and TON_IoT datasets.Our technique identified 22 key characteristics in UNSW-NB-15 and 8 in TON_IoT.We evaluated prediction using seven ML methods:Decision Tree(DT),Random Forest(RF),Logistic Regression(LR),Naive Bayes(NB),K-Nearest Neighbors(KNN),Support Vector Machines(SVM),and Multilayer Perceptron(MLP)classifiers.The DT,RF,NB,and MLP classifiers helped our model surpass the competition on both datasets.Therefore,the investigational outcomes of our hybrid model may help IDSs defend business assets from various cyberattack vectors. 展开更多
关键词 Machine learning CYBERSECURITY cyberattacks feature selection classification intrusion detection system
下载PDF
MAIPFE:An Efficient Multimodal Approach Integrating Pre-Emptive Analysis,Personalized Feature Selection,and Explainable AI
17
作者 Moshe Dayan Sirapangi S.Gopikrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第5期2229-2251,共23页
Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of mu... Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world. 展开更多
关键词 Predictive health modeling Medical Internet of Things explainable artificial intelligence personalized feature selection preemptive analysis
下载PDF
A Self-Adapting and Efficient Dandelion Algorithm and Its Application to Feature Selection for Credit Card Fraud Detection
18
作者 Honghao Zhu MengChu Zhou +1 位作者 Yu Xie Aiiad Albeshri 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期377-390,共14页
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all... A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods. 展开更多
关键词 Credit card fraud detection(CCFD) dandelion algorithm(DA) feature selection normal sowing operator
下载PDF
Hybrid Gene Selection Methods for High-Dimensional Lung Cancer Data Using Improved Arithmetic Optimization Algorithm
19
作者 Mutasem K.Alsmadi 《Computers, Materials & Continua》 SCIE EI 2024年第6期5175-5200,共26页
Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression ... Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner.Machine Learning(ML)has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique.Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification.Normally,microarrays include several genes and may cause confusion or false prediction.Therefore,the Arithmetic Optimization Algorithm(AOA)is used to identify the optimal gene subset to reduce the number of selected genes.Which can allow the classifiers to yield the best performance for lung cancer classification.In addition,we proposed a modified version of AOA which can work effectively on the high dimensional dataset.In the modified AOA,the features are ranked by their weights and are used to initialize the AOA population.The exploitation process of AOA is then enhanced by developing a local search algorithm based on two neighborhood strategies.Finally,the efficiency of the proposed methods was evaluated on gene expression datasets related to Lung cancer using stratified 4-fold cross-validation.The method’s efficacy in selecting the optimal gene subset is underscored by its ability to maintain feature proportions between 10%to 25%.Moreover,the approach significantly enhances lung cancer prediction accuracy.For instance,Lung_Harvard1 achieved an accuracy of 97.5%,Lung_Harvard2 and Lung_Michigan datasets both achieved 100%,Lung_Adenocarcinoma obtained an accuracy of 88.2%,and Lung_Ontario achieved an accuracy of 87.5%.In conclusion,the results indicate the potential promise of the proposed modified AOA approach in classifying microarray cancer data. 展开更多
关键词 Lung cancer gene selection improved arithmetic optimization algorithm and machine learning
下载PDF
Enhanced Arithmetic Optimization Algorithm Guided by a Local Search for the Feature Selection Problem
20
作者 Sana Jawarneh 《Intelligent Automation & Soft Computing》 2024年第3期511-525,共15页
High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classifi... High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classification per-formance.However,identifying the optimal features within high-dimensional datasets remains a computationally demanding task,necessitating the use of efficient algorithms.This paper introduces the Arithmetic Optimization Algorithm(AOA),a novel approach for finding the optimal feature subset.AOA is specifically modified to address feature selection problems based on a transfer function.Additionally,two enhancements are incorporated into the AOA algorithm to overcome limitations such as limited precision,slow convergence,and susceptibility to local optima.The first enhancement proposes a new method for selecting solutions to be improved during the search process.This method effectively improves the original algorithm’s accuracy and convergence speed.The second enhancement introduces a local search with neighborhood strategies(AOA_NBH)during the AOA exploitation phase.AOA_NBH explores the vast search space,aiding the algorithm in escaping local optima.Our results demonstrate that incorporating neighborhood methods enhances the output and achieves significant improvement over state-of-the-art methods. 展开更多
关键词 Arithmetic optimization algorithm CLASSIFICATION feature selection problem optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部