期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
SCChOA:Hybrid Sine-Cosine Chimp Optimization Algorithm for Feature Selection 被引量:2
1
作者 Shanshan Wang Quan Yuan +2 位作者 Weiwei Tan Tengfei Yang Liang Zeng 《Computers, Materials & Continua》 SCIE EI 2023年第12期3057-3075,共19页
Feature Selection(FS)is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy.However,due to the high dimensionality and complexity of t... Feature Selection(FS)is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy.However,due to the high dimensionality and complexity of the dataset,most optimization algorithms for feature selection suffer from a balance issue during the search process.Therefore,the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm(SCChOA)to address the feature selection problem.In this approach,firstly,a multi-cycle iterative strategy is designed to better combine the Sine-Cosine Algorithm(SCA)and the Chimp Optimization Algorithm(ChOA),enabling a more effective search in the objective space.Secondly,an S-shaped transfer function is introduced to perform binary transformation on SCChOA.Finally,the binary SCChOA is combined with the K-Nearest Neighbor(KNN)classifier to form a novel binary hybrid wrapper feature selection method.To evaluate the performance of the proposed method,16 datasets from different dimensions of the UCI repository along with four evaluation metrics of average fitness value,average classification accuracy,average feature selection number,and average running time are considered.Meanwhile,seven state-of-the-art metaheuristic algorithms for solving the feature selection problem are chosen for comparison.Experimental results demonstrate that the proposed method outperforms other compared algorithms in solving the feature selection problem.It is capable of maximizing the reduction in the number of selected features while maintaining a high classification accuracy.Furthermore,the results of statistical tests also confirm the significant effectiveness of this method. 展开更多
关键词 Metaheuristics chimp optimization algorithm sine-cosine algorithm feature selection and classification
下载PDF
Improved Whale Optimization with Local-Search Method for Feature Selection 被引量:2
2
作者 Malek Alzaqebah Mutasem KAlsmadi +12 位作者 Sana Jawarneh Jehad Saad Alqurni Mohammed Tayfour Ibrahim Almarashdeh Rami Mustafa A.Mohammad Fahad A.Alghamdi Nahier Aldhafferi Abdullah Alqahtani Khalid A.Alissa Bashar A.Aldeeb Usama A.Badawi Maram Alwohaibi Hayat Alfagham 《Computers, Materials & Continua》 SCIE EI 2023年第4期1371-1389,共19页
Various feature selection algorithms are usually employed to improve classification models’overall performance.Optimization algorithms typically accompany such algorithms to select the optimal set of features.Among t... Various feature selection algorithms are usually employed to improve classification models’overall performance.Optimization algorithms typically accompany such algorithms to select the optimal set of features.Among the most currently attractive trends within optimization algorithms are hybrid metaheuristics.The present paper presents two Stages of Local Search models for feature selection based on WOA(Whale Optimization Algorithm)and Great Deluge(GD).GD Algorithm is integrated with the WOA algorithm to improve exploitation by identifying the most promising regions during the search.Another version is employed using the best solution found by the WOA algorithm and exploited by the GD algorithm.In addition,disruptive selection(DS)is employed to select the solutions from the population for local search.DS is chosen to maintain the diversity of the population via enhancing low and high-quality solutions.Fifteen(15)standard benchmark datasets provided by the University of California Irvine(UCI)repository were used in evaluating the proposed approaches’performance.Next,a comparison was made with four population-based algorithms as wrapper feature selection methods from the literature.The proposed techniques have proved their efficiency in enhancing classification accuracy compared to other wrapper methods.Hence,the WOA can search effectively in the feature space and choose the most relevant attributes for classification tasks. 展开更多
关键词 OPTIMIZATION whale optimization algorithm great deluge algorithm feature selection and classification
下载PDF
Ensemble feature selection integrating elitist roles and quantum game model 被引量:1
3
作者 Weiping Ding Jiandong Wang +1 位作者 Zhijin Guan Quan Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期584-594,共11页
To accelerate the selection process of feature subsets in the rough set theory (RST), an ensemble elitist roles based quantum game (EERQG) algorithm is proposed for feature selec- tion. Firstly, the multilevel eli... To accelerate the selection process of feature subsets in the rough set theory (RST), an ensemble elitist roles based quantum game (EERQG) algorithm is proposed for feature selec- tion. Firstly, the multilevel elitist roles based dynamics equilibrium strategy is established, and both immigration and emigration of elitists are able to be self-adaptive to balance between exploration and exploitation for feature selection. Secondly, the utility matrix of trust margins is introduced to the model of multilevel elitist roles to enhance various elitist roles' performance of searching the optimal feature subsets, and the win-win utility solutions for feature selec- tion can be attained. Meanwhile, a novel ensemble quantum game strategy is designed as an intriguing exhibiting structure to perfect the dynamics equilibrium of multilevel elitist roles. Finally, the en- semble manner of multilevel elitist roles is employed to achieve the global minimal feature subset, which will greatly improve the fea- sibility and effectiveness. Experiment results show the proposed EERQG algorithm has superiority compared to the existing feature selection algorithms. 展开更多
关键词 ensemble quantum game utility matrix of trust mar-gin dynamics equilibrium strategy multilevel elitist role feature selection and classification.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部