Feature selection is the pretreatment of data mining. Heuristic search algorithms are often used for this subject. Many heuristic search algorithms are based on discernibility matrices, which only consider the differe...Feature selection is the pretreatment of data mining. Heuristic search algorithms are often used for this subject. Many heuristic search algorithms are based on discernibility matrices, which only consider the difference in information system. Because the similar characteristics are not revealed in discernibility matrix, the result may not be the simplest rules. Although differencesimilitude(DS) methods take both of the difference and the similitude into account, the existing search strategy will cause some important features to be ignored. An improved DS based algorithm is proposed to solve this problem in this paper. An attribute rank function, which considers both of the difference and similitude in feature selection, is defined in the improved algorithm. Experiments show that it is an effective algorithm, especially for large-scale databases. The time complexity of the algorithm is O(| C |^2|U |^2).展开更多
Feature selection is one of the important topics in text classification. However, most of existing feature selection methods are serial and inefficient to be applied to massive text data sets. In this case, a feature ...Feature selection is one of the important topics in text classification. However, most of existing feature selection methods are serial and inefficient to be applied to massive text data sets. In this case, a feature selection method based on parallel collaborative evolutionary genetic algorithm is presented. The presented method uses genetic algorithm to select feature subsets and takes advantage of parallel collaborative evolution to enhance time efficiency, so it can quickly acquire the feature subsets which are more representative. The experimental results show that, for accuracy ratio and recall ratio, the presented method is better than information gain, x2 statistics, and mutual information methods; the consumed time of the presented method with only one CPU is inferior to that of these three methods, but the presented method is supe rior after using the parallel strategy.展开更多
This paper proposes one method of feature selection by using Bayes' theorem. The purpose of the proposed method is to reduce the computational complexity and increase the classification accuracy of the selected featu...This paper proposes one method of feature selection by using Bayes' theorem. The purpose of the proposed method is to reduce the computational complexity and increase the classification accuracy of the selected feature subsets. The dependence between two attributes (binary) is determined based on the probabilities of their joint values that contribute to positive and negative classification decisions. If opposing sets of attribute values do not lead to opposing classification decisions (zero probability), then the two attributes are considered independent of each other, otherwise dependent, and one of them can be removed and thus the number of attributes is reduced. The process must be repeated on all combinations of attributes. The paper also evaluates the approach by comparing it with existing feature selection algorithms over 8 datasets from University of California, Irvine (UCI) machine learning databases. The proposed method shows better results in terms of number of selected features, classification accuracy, and running time than most existing algorithms.展开更多
The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.Th...The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices.展开更多
In the area of pattern recognition and machine learning,features play a key role in prediction.The famous applications of features are medical imaging,image classification,and name a few more.With the exponential grow...In the area of pattern recognition and machine learning,features play a key role in prediction.The famous applications of features are medical imaging,image classification,and name a few more.With the exponential growth of information investments in medical data repositories and health service provision,medical institutions are collecting large volumes of data.These data repositories contain details information essential to support medical diagnostic decisions and also improve patient care quality.On the other hand,this growth also made it difficult to comprehend and utilize data for various purposes.The results of imaging data can become biased because of extraneous features present in larger datasets.Feature selection gives a chance to decrease the number of components in such large datasets.Through selection techniques,ousting the unimportant features and selecting a subset of components that produces prevalent characterization precision.The correct decision to find a good attribute produces a precise grouping model,which enhances learning pace and forecast control.This paper presents a review of feature selection techniques and attributes selection measures for medical imaging.This review is meant to describe feature selection techniques in a medical domainwith their pros and cons and to signify its application in imaging data and data mining algorithms.The review reveals the shortcomings of the existing feature and attributes selection techniques to multi-sourced data.Moreover,this review provides the importance of feature selection for correct classification of medical infections.In the end,critical analysis and future directions are provided.展开更多
Feature selection is an important approach to dimensionality reduction in the field of text classification. Because of the difficulty in handling the problem that the selected features always contain redundant informa...Feature selection is an important approach to dimensionality reduction in the field of text classification. Because of the difficulty in handling the problem that the selected features always contain redundant information, we propose a new simple feature selection method, which can effectively filter the redundant features. First, to calculate the relationship between two words, the definitions of word frequency based relevance and correlative redundancy are introduced. Furthermore, an optimal feature selection(OFS) method is chosen to obtain a feature subset FS1. Finally, to improve the execution speed, the redundant features in FS1 are filtered by combining a predetermined threshold, and the filtered features are memorized in the linked lists. Experiments are carried out on three datasets(Web KB, 20-Newsgroups, and Reuters-21578) where in support vector machines and na?ve Bayes are used. The results show that the classification accuracy of the proposed method is generally higher than that of typical traditional methods(information gain, improved Gini index, and improved comprehensively measured feature selection) and the OFS methods. Moreover, the proposed method runs faster than typical mutual information-based methods(improved and normalized mutual information-based feature selections, and multilabel feature selection based on maximum dependency and minimum redundancy) while simultaneously ensuring classification accuracy. Statistical results validate the effectiveness of the proposed method in handling redundant information in text classification.展开更多
In order to select effective feature subsets for pattern classification, a novel statistics rough set method is presented based on generalized attribute reduction. Unlike classical reduction approaches, the objects in...In order to select effective feature subsets for pattern classification, a novel statistics rough set method is presented based on generalized attribute reduction. Unlike classical reduction approaches, the objects in universe of discourse are signs of training sample sets and values of attributes are taken as statistical parameters. The binary relation and discernibility matrix for the reduction are induced by distance function. Furthermore, based on the monotony of the distance function defined by Mahalanobis distance, the effective feature subsets are obtained as generalized attribute reducts. Experiment result shows that the classification performance can be improved by using the selected feature subsets.展开更多
The rapid growth of social networks has produced an unprecedented amount of user-generated data, which provides an excellent opportunity for text mining. Authorship analysis, an important part of text mining, attempts...The rapid growth of social networks has produced an unprecedented amount of user-generated data, which provides an excellent opportunity for text mining. Authorship analysis, an important part of text mining, attempts to learn about the author of the text through subtle variations in the writing styles that occur between gender, age and social groups. Such information has a variety of applications including advertising and law enforcement. One of the most accessible sources of user-generated data is Twitter, which makes the majority of its user data freely available through its data access API. In this study we seek to identify the gender of users on Twitter using Perceptron and Nai ve Bayes with selected 1 through 5-gram features from tweet text. Stream applications of these algorithms were employed for gender prediction to handle the speed and volume of tweet traffic. Because informal text, such as tweets, cannot be easily evaluated using traditional dictionary methods, n-gram features were implemented in this study to represent streaming tweets. The large number of 1 through 5-grams requires that only a subset of them be used in gender classification, for this reason informative n-gram features were chosen using multiple selection algorithms. In the best case the Naive Bayes and Perceptron algorithms produced accuracy, balanced accuracy, and F-measure above 99%.展开更多
基金Supported by the National Natural Science Foundation of China (90204008)Chen-Guang Plan of Wuhan City(20055003059-3)
文摘Feature selection is the pretreatment of data mining. Heuristic search algorithms are often used for this subject. Many heuristic search algorithms are based on discernibility matrices, which only consider the difference in information system. Because the similar characteristics are not revealed in discernibility matrix, the result may not be the simplest rules. Although differencesimilitude(DS) methods take both of the difference and the similitude into account, the existing search strategy will cause some important features to be ignored. An improved DS based algorithm is proposed to solve this problem in this paper. An attribute rank function, which considers both of the difference and similitude in feature selection, is defined in the improved algorithm. Experiments show that it is an effective algorithm, especially for large-scale databases. The time complexity of the algorithm is O(| C |^2|U |^2).
基金supported by the Science and Technology Plan Projects of Sichuan Province of China under Grant No.2008GZ0003the Key Technologies R & D Program of Sichuan Province of China under Grant No.2008SZ0100
文摘Feature selection is one of the important topics in text classification. However, most of existing feature selection methods are serial and inefficient to be applied to massive text data sets. In this case, a feature selection method based on parallel collaborative evolutionary genetic algorithm is presented. The presented method uses genetic algorithm to select feature subsets and takes advantage of parallel collaborative evolution to enhance time efficiency, so it can quickly acquire the feature subsets which are more representative. The experimental results show that, for accuracy ratio and recall ratio, the presented method is better than information gain, x2 statistics, and mutual information methods; the consumed time of the presented method with only one CPU is inferior to that of these three methods, but the presented method is supe rior after using the parallel strategy.
文摘This paper proposes one method of feature selection by using Bayes' theorem. The purpose of the proposed method is to reduce the computational complexity and increase the classification accuracy of the selected feature subsets. The dependence between two attributes (binary) is determined based on the probabilities of their joint values that contribute to positive and negative classification decisions. If opposing sets of attribute values do not lead to opposing classification decisions (zero probability), then the two attributes are considered independent of each other, otherwise dependent, and one of them can be removed and thus the number of attributes is reduced. The process must be repeated on all combinations of attributes. The paper also evaluates the approach by comparing it with existing feature selection algorithms over 8 datasets from University of California, Irvine (UCI) machine learning databases. The proposed method shows better results in terms of number of selected features, classification accuracy, and running time than most existing algorithms.
基金National Key R&D Program of China(2016YFd01304)Postgraduate Innovation Support Project of Shijiazhuang Tiedao University(YC20035).
文摘The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices.
文摘In the area of pattern recognition and machine learning,features play a key role in prediction.The famous applications of features are medical imaging,image classification,and name a few more.With the exponential growth of information investments in medical data repositories and health service provision,medical institutions are collecting large volumes of data.These data repositories contain details information essential to support medical diagnostic decisions and also improve patient care quality.On the other hand,this growth also made it difficult to comprehend and utilize data for various purposes.The results of imaging data can become biased because of extraneous features present in larger datasets.Feature selection gives a chance to decrease the number of components in such large datasets.Through selection techniques,ousting the unimportant features and selecting a subset of components that produces prevalent characterization precision.The correct decision to find a good attribute produces a precise grouping model,which enhances learning pace and forecast control.This paper presents a review of feature selection techniques and attributes selection measures for medical imaging.This review is meant to describe feature selection techniques in a medical domainwith their pros and cons and to signify its application in imaging data and data mining algorithms.The review reveals the shortcomings of the existing feature and attributes selection techniques to multi-sourced data.Moreover,this review provides the importance of feature selection for correct classification of medical infections.In the end,critical analysis and future directions are provided.
基金Project supported by the Joint Funds of the National Natural Science Foundation of China(No.U1509214)the Beijing Natural Science Foundation,China(No.4174105)+1 种基金the Key Projects of National Bureau of Statistics of China(No.2017LZ05)the Discipline Construction Foundation of the Central University of Finance and Economics,China(No.2016XX02)
文摘Feature selection is an important approach to dimensionality reduction in the field of text classification. Because of the difficulty in handling the problem that the selected features always contain redundant information, we propose a new simple feature selection method, which can effectively filter the redundant features. First, to calculate the relationship between two words, the definitions of word frequency based relevance and correlative redundancy are introduced. Furthermore, an optimal feature selection(OFS) method is chosen to obtain a feature subset FS1. Finally, to improve the execution speed, the redundant features in FS1 are filtered by combining a predetermined threshold, and the filtered features are memorized in the linked lists. Experiments are carried out on three datasets(Web KB, 20-Newsgroups, and Reuters-21578) where in support vector machines and na?ve Bayes are used. The results show that the classification accuracy of the proposed method is generally higher than that of typical traditional methods(information gain, improved Gini index, and improved comprehensively measured feature selection) and the OFS methods. Moreover, the proposed method runs faster than typical mutual information-based methods(improved and normalized mutual information-based feature selections, and multilabel feature selection based on maximum dependency and minimum redundancy) while simultaneously ensuring classification accuracy. Statistical results validate the effectiveness of the proposed method in handling redundant information in text classification.
基金This work was supported by the National Basic Research Program of China(No.2001CB309403)
文摘In order to select effective feature subsets for pattern classification, a novel statistics rough set method is presented based on generalized attribute reduction. Unlike classical reduction approaches, the objects in universe of discourse are signs of training sample sets and values of attributes are taken as statistical parameters. The binary relation and discernibility matrix for the reduction are induced by distance function. Furthermore, based on the monotony of the distance function defined by Mahalanobis distance, the effective feature subsets are obtained as generalized attribute reducts. Experiment result shows that the classification performance can be improved by using the selected feature subsets.
文摘The rapid growth of social networks has produced an unprecedented amount of user-generated data, which provides an excellent opportunity for text mining. Authorship analysis, an important part of text mining, attempts to learn about the author of the text through subtle variations in the writing styles that occur between gender, age and social groups. Such information has a variety of applications including advertising and law enforcement. One of the most accessible sources of user-generated data is Twitter, which makes the majority of its user data freely available through its data access API. In this study we seek to identify the gender of users on Twitter using Perceptron and Nai ve Bayes with selected 1 through 5-gram features from tweet text. Stream applications of these algorithms were employed for gender prediction to handle the speed and volume of tweet traffic. Because informal text, such as tweets, cannot be easily evaluated using traditional dictionary methods, n-gram features were implemented in this study to represent streaming tweets. The large number of 1 through 5-grams requires that only a subset of them be used in gender classification, for this reason informative n-gram features were chosen using multiple selection algorithms. In the best case the Naive Bayes and Perceptron algorithms produced accuracy, balanced accuracy, and F-measure above 99%.
基金Supported by the National Natural Science Foundation of China under Grant No.60703013 (国家自然科学基金)the Development Program for Outstanding Young Teachers in Harbin Institute of Technology of China under Grant HITQNJS.2007.017 (哈尔滨工业大学优秀青年教师培养计划) the Scientific Research Foundation of Harbin Institute Technology of China under Grant No.HIT2003.35 (哈尔滨工业大学校基金)