Sediment traps are an important tool for studying the source, composition and sedimentation processes of sinking particulate matter in the ocean. An in situ observational mooring(TJ-A-1) is located in the northern Sou...Sediment traps are an important tool for studying the source, composition and sedimentation processes of sinking particulate matter in the ocean. An in situ observational mooring(TJ-A-1) is located in the northern South China Sea(20.05°N, 117.42°E) at a water depth of 2 100 m and equipped with two sediment traps deployed at 500 m and 1 950 m. Samples were collected at 18-day intervals, and 20 samples were obtained at both depths from May 2014 to May 2015. Large amounts of fecal matter and marine snow were collected in the lower trap. The fluxes of marine snow and fecal pellets exhibited a fluctuating decrease between May 2014 and early August 2014 and then stabilized at a relatively low level. Scanning electron microscopy observations revealed that the main components of the marine snow and fecal pellets were diatoms, coccolithophores, radiolarians, and other debris, all of which are planktons mostly produced in photic zone. Used in conjunction with the particle collection range estimates from the lower trap and data on ocean surface chlorophyll, these marine snow and fecal pellets were related to the lateral transport of deep water and not vertical migrations from overlying water column. Moreover, the source area might be southwest of Taiwan.展开更多
Fecal indicator bacteria, such as total coliforms and E. coli, are a challenge to control in urban and rural stormwater runoff. To assess the challenges of improving bacterial water quality standards in surface waters...Fecal indicator bacteria, such as total coliforms and E. coli, are a challenge to control in urban and rural stormwater runoff. To assess the challenges of improving bacterial water quality standards in surface waters, microcosm experiments were conducted to assess how decay rates of total coliforms and E. coli are affected by sediments and associated organic matter. Samples were collected at a lake embayment to create laboratory microcosms consisting of different combinations of unsterilized and sterilized water and sediment. Calculated first-order decay rate constants ranged from 0.021 to 0.047 h-1 for total coliforms and 0.017 and 0.037 h-1 for E. coli, depending on how each microcosm was prepared. It is evident that sediment in contact with the water column decreases bacteria decay rate, showing that care should be taken when designing stormwater treatment measures. In addition, high organic carbon content in the sediment temporarily increased bacteria concentrations in the water column. The results demonstrate that stormwater treatment measures, such as extended detention basins and constructed wetlands, must hold water for several days to allow for reduction of bacterial concentrations to acceptable levels. In addition, to troubleshoot detention basins and constructed wetlands for causes of high effluent bacterial concentrations, analyses of sediment, organic carbon, and water column depth should be conducted.展开更多
Bacterial particle association has important consequences for water-quality monitoring and modeling. Particle association can change vertical and horizontal transport of bacterial cells, as well as patterns of persist...Bacterial particle association has important consequences for water-quality monitoring and modeling. Particle association can change vertical and horizontal transport of bacterial cells, as well as patterns of persistence and production. In this study, the abundance and particle association of total bacteria and the fecal-indicator, Enterococcus, were quantified between June and October 2008 in the lower Hudson River Estuary (HRE). Twelve sites were sampled, including mid-channel, near shore, and tributary habitats, plus a sewage outfall. Total bacterial cell counts averaged 9.2 × 109 ± 6.4 × 109 cell l–1 (1 standard deviation), comparable to previous sampling in the HRE. Unlike earlier studies, bacterial abundance did not change consistently along the north/south estuarine salinity gradient. Enterococcus concentrations were highly variable, but mid-channel stations had significantly lower values than other habitat categories. Counts of total bacteria and Enterococcus were both correlated with turbidity, which was also significantly lower at mid-channel stations. A larger fraction of Enterococci were associated with particles (52.9 ± 20.9%, 1 standard deviation) than in the pool of total bacteria (23.8 ± 15.0%). This high frequency of particle association, relative to total bacteria, could cause Enterococcus to be preferentially retained near input sources because of enhanced deposition to bottom sediments, where they would be available for later resuspension. In turn, retention and resuspension in nearshore environments may explain the observed cross-channel variability of turbidity and Enterococcus. Assessments and predictive models of estuarine water quality may be improved by incorporating cross-channel variability and the effects of particle association on key indicators.展开更多
As the topmost predator in Antarctica,the seal is a unique indicator of Antarctic environment and climate changes.In this study,we collected a sediment core from the Fildes Peninsula of West Antarctica,and used choles...As the topmost predator in Antarctica,the seal is a unique indicator of Antarctic environment and climate changes.In this study,we collected a sediment core from the Fildes Peninsula of West Antarctica,and used cholesterol,cholestanol,epicoprostanol,coprostanol,and seal hair numbers as the proxy indicators of seal population size and phytol as of general vegetation,and we reconstructed the 20th century history of variation of the seal population and vegetation abundance on this island.The sealing industry in the early 20th century caused the dramatic decline of seal population,and the ban of seal hunting since the 1960s led to its recovery of seal population.The seal population during the past century was primarily controlled by human activities and krill density.The reconstructed relation between seal population and vegetation abundance may offer new insights into Antarctic environment and ecology.展开更多
基金The National Natural Science Foundation of China under contract Nos 91528304 and 41376043.
文摘Sediment traps are an important tool for studying the source, composition and sedimentation processes of sinking particulate matter in the ocean. An in situ observational mooring(TJ-A-1) is located in the northern South China Sea(20.05°N, 117.42°E) at a water depth of 2 100 m and equipped with two sediment traps deployed at 500 m and 1 950 m. Samples were collected at 18-day intervals, and 20 samples were obtained at both depths from May 2014 to May 2015. Large amounts of fecal matter and marine snow were collected in the lower trap. The fluxes of marine snow and fecal pellets exhibited a fluctuating decrease between May 2014 and early August 2014 and then stabilized at a relatively low level. Scanning electron microscopy observations revealed that the main components of the marine snow and fecal pellets were diatoms, coccolithophores, radiolarians, and other debris, all of which are planktons mostly produced in photic zone. Used in conjunction with the particle collection range estimates from the lower trap and data on ocean surface chlorophyll, these marine snow and fecal pellets were related to the lateral transport of deep water and not vertical migrations from overlying water column. Moreover, the source area might be southwest of Taiwan.
文摘Fecal indicator bacteria, such as total coliforms and E. coli, are a challenge to control in urban and rural stormwater runoff. To assess the challenges of improving bacterial water quality standards in surface waters, microcosm experiments were conducted to assess how decay rates of total coliforms and E. coli are affected by sediments and associated organic matter. Samples were collected at a lake embayment to create laboratory microcosms consisting of different combinations of unsterilized and sterilized water and sediment. Calculated first-order decay rate constants ranged from 0.021 to 0.047 h-1 for total coliforms and 0.017 and 0.037 h-1 for E. coli, depending on how each microcosm was prepared. It is evident that sediment in contact with the water column decreases bacteria decay rate, showing that care should be taken when designing stormwater treatment measures. In addition, high organic carbon content in the sediment temporarily increased bacteria concentrations in the water column. The results demonstrate that stormwater treatment measures, such as extended detention basins and constructed wetlands, must hold water for several days to allow for reduction of bacterial concentrations to acceptable levels. In addition, to troubleshoot detention basins and constructed wetlands for causes of high effluent bacterial concentrations, analyses of sediment, organic carbon, and water column depth should be conducted.
文摘Bacterial particle association has important consequences for water-quality monitoring and modeling. Particle association can change vertical and horizontal transport of bacterial cells, as well as patterns of persistence and production. In this study, the abundance and particle association of total bacteria and the fecal-indicator, Enterococcus, were quantified between June and October 2008 in the lower Hudson River Estuary (HRE). Twelve sites were sampled, including mid-channel, near shore, and tributary habitats, plus a sewage outfall. Total bacterial cell counts averaged 9.2 × 109 ± 6.4 × 109 cell l–1 (1 standard deviation), comparable to previous sampling in the HRE. Unlike earlier studies, bacterial abundance did not change consistently along the north/south estuarine salinity gradient. Enterococcus concentrations were highly variable, but mid-channel stations had significantly lower values than other habitat categories. Counts of total bacteria and Enterococcus were both correlated with turbidity, which was also significantly lower at mid-channel stations. A larger fraction of Enterococci were associated with particles (52.9 ± 20.9%, 1 standard deviation) than in the pool of total bacteria (23.8 ± 15.0%). This high frequency of particle association, relative to total bacteria, could cause Enterococcus to be preferentially retained near input sources because of enhanced deposition to bottom sediments, where they would be available for later resuspension. In turn, retention and resuspension in nearshore environments may explain the observed cross-channel variability of turbidity and Enterococcus. Assessments and predictive models of estuarine water quality may be improved by incorporating cross-channel variability and the effects of particle association on key indicators.
基金supported by the National Natural Science Foundation of China (No.40730107)the National Key Technology R&D Program of China (No.2006BAB18B07)+1 种基金the National Basic Research Program of China (No.2009CB42160X)the State Key Laboratory of Organic Geochemistry Foundation (No.OGL-200606)
文摘As the topmost predator in Antarctica,the seal is a unique indicator of Antarctic environment and climate changes.In this study,we collected a sediment core from the Fildes Peninsula of West Antarctica,and used cholesterol,cholestanol,epicoprostanol,coprostanol,and seal hair numbers as the proxy indicators of seal population size and phytol as of general vegetation,and we reconstructed the 20th century history of variation of the seal population and vegetation abundance on this island.The sealing industry in the early 20th century caused the dramatic decline of seal population,and the ban of seal hunting since the 1960s led to its recovery of seal population.The seal population during the past century was primarily controlled by human activities and krill density.The reconstructed relation between seal population and vegetation abundance may offer new insights into Antarctic environment and ecology.