The local gas-flow behavior is almost unknown for low pressure plasma systems, except parallel plate reactors for semiconductor purposes. To overcome this lack of knowledge, this study starts with the influence invest...The local gas-flow behavior is almost unknown for low pressure plasma systems, except parallel plate reactors for semiconductor purposes. To overcome this lack of knowledge, this study starts with the influence investigation of the gas feed-in systems technical layout on the homogeneity of the gas supply for large volume plasma enhanced chemical vapor deposition (PECVD) chambers. Computational fluid dynamics (CFD) simulations are used as a tool to determine velocity and pressure distribution inside the gas feed-in pipe as well as in the PECVD-chamber itself. The parameters varied were: flow rate, pipe length, number of holes, hole diameter and aspect ratio of the pipe section. The calculated pressure values are compared with the experimentally measured ones to validate the simulation results. An excellent conformity of the calculated and measured pressures is observed. With the aim to evaluate the homogeneity of gas distribution through the pipe holes the nonuniformity coefficient (Φ) was created. The results show the influence of each layout parameter in the homogeneity of the gas distribution. Hence in future correct technical layouts of gas feed-in systems can easily be applied. With these results construction guidelines has been formulated.展开更多
The traditional practice of employing a two-stage coal-fed gasification process is to feed all of the oxygen to provide a vigorous amount of combustion in the first stage but only feed the coal without oxygen in the s...The traditional practice of employing a two-stage coal-fed gasification process is to feed all of the oxygen to provide a vigorous amount of combustion in the first stage but only feed the coal without oxygen in the second stage to allow the endothermic gasification process to occur downstream of the second stage. One of the merits of this 2-stage practice is to keep the gasifier temperature low downstream from the 2nd stage. This helps to extend the life of refractory bricks, decrease gasifier shut-down frequency for scheduled maintenance, and reduce the maintenance costs. In this traditional 2-stage practice, the temperature reduction in the second stage is achieved at the expense of a higher than normal temperature in the first stage. This study investigates a concept totally opposite to the traditional two-stage coal feeding practices in which the injected oxygen is split between the two stages, while all the coal is fed into the first stage. The hypothesis of this two-stage oxygen injection is that a distributed oxygen injection scheme can also distribute the release of heat to a larger gasifier volume and, thus, reduce the peak temperature distribution in the gasifier. The increased life expectancy and reduced maintenance of the refractory bricks can prevail in the entire gasifier and not just downstream from the second stage. In this study, both experiments and computational simulations have been performed to verify the hypothesis. A series of experiments conducted at 2.5 - 3.0 bars shows that the peak temperature and temperature range in the gasifier do decrease from 600?C - 1550?C with one stage oxygen injection to 950?C - 1230?C with a 60 - 40 oxygen split-injection. The CFD results conducted at 2.5 bars show that 1) the carbon conversion ratio for different oxygen injection schemes are all above 95%;2) H2 (about 70% vol.) dominates the syngas composition at the exit;3) the 80% - 20% case yields the lowest peak temperature and the most uniform temperature distribution along the gasifier;and 4) the 40% - 60% case produces the syngas with the highest HHV. Both experimental data and CFD predictions verify the hypothesis that it is feasible to reduce the peak temperature and achieve more uniform temperature in the gasifier by adequately controlling a two-stage oxygen injection with only minor changes of the composition and heating value of the syngas.展开更多
Background:Colistin(polymyxin E)is a kind of peptide antibiotic which has been approved in animal production for the purposes of disease prevention,treatment,and growth promotion.However,the wide use of colistin in an...Background:Colistin(polymyxin E)is a kind of peptide antibiotic which has been approved in animal production for the purposes of disease prevention,treatment,and growth promotion.However,the wide use of colistin in animal feed may accelerate the spread of colistin-resistance gene MCR-1 from animal production to human beings,and its residue in animal-origin food may also pose serious health hazards to humans.Thus,it is necessary to develop corresponding analytical methods to monitor the addition of colistin in animal feed and the colistin residue in animal-origin food.Results:A one-step enzyme-linked immunosorbent assay(ELISA)and a lateral flow immunochromatographic assay(LFIA)for colistin were developed based on a newly developed monoclonal antibody.The ELISA showed a 50%inhibition value(IC50)of 9.7 ng/m L with assay time less than 60 min,while the LFIA had a strip reader-based detection limit of 0.87 ng/m L in phosphate buffer with assay time less than 15 min.For reducing the non-specific adsorption of colistin onto sample vial,the components of sample extraction solution were optimized and proved to greatly improve the assay accuracy.The spiked recovery experiment showed that the recoveries of colistin from feed,milk and meat samples were in the range of 77.83%to 113.38%with coefficient of variations less than 13%by ELISA analysis and less than 18%by LFIA analysis,respectively.Furthermore,actual sample analysis indicated that the two immunoassays can produce results consistent with instrumental analysis.Conclusions:The developed assays can be used for rapid qualitative or quantitative detection of colistin in animal feed and food.展开更多
An analytical approach is described for the axisymmetric flow through a permeable near-sphere with a modification to boundary conditions in order to account permeability. The Stokes equation was solved by a regular pe...An analytical approach is described for the axisymmetric flow through a permeable near-sphere with a modification to boundary conditions in order to account permeability. The Stokes equation was solved by a regular perturbation technique up to the second order correction in epsilon representing the deviation from the radius of nondeformed sphere. The drag and the flow rate were calculated and the results were evaluated from the point of geometry and the permeability of the surface. An attempt also was made to apply the theory to the filter feeding problem. The filter appendages of small ecologically important aquatic organisms were modeled as axisymmetric permeable bodies, therefore a rough model for this problem was considered here as an oblate spheroid or near-sphere.展开更多
A modified coupled map car-following model is proposed, in which two successive vehicle headways in front of the considering vehicle is incorporated into the optimal velocity function. The steady state under certain c...A modified coupled map car-following model is proposed, in which two successive vehicle headways in front of the considering vehicle is incorporated into the optimal velocity function. The steady state under certain conditions is obtained. An error system around the steady state is studied further. Moreover, the condition for the state having no traffic jam is derived. A new control scheme is presented to suppress the traffic jam in the modified coupled map car-following model under the open boundary. A control signal including the velocity differences between the following and the considering vehicles, and between the preceding and the considering vehicles is used. The condition under which the traffic jam can be well suppressed is analysed. The results are compared with that presented by t^onishi et al. (the KKH model). The simulation results show that the temporal behaviour obtained in our model is better than that in the KKH model. The simulation results are in good agreement with the theoretical analysis.展开更多
文摘The local gas-flow behavior is almost unknown for low pressure plasma systems, except parallel plate reactors for semiconductor purposes. To overcome this lack of knowledge, this study starts with the influence investigation of the gas feed-in systems technical layout on the homogeneity of the gas supply for large volume plasma enhanced chemical vapor deposition (PECVD) chambers. Computational fluid dynamics (CFD) simulations are used as a tool to determine velocity and pressure distribution inside the gas feed-in pipe as well as in the PECVD-chamber itself. The parameters varied were: flow rate, pipe length, number of holes, hole diameter and aspect ratio of the pipe section. The calculated pressure values are compared with the experimentally measured ones to validate the simulation results. An excellent conformity of the calculated and measured pressures is observed. With the aim to evaluate the homogeneity of gas distribution through the pipe holes the nonuniformity coefficient (Φ) was created. The results show the influence of each layout parameter in the homogeneity of the gas distribution. Hence in future correct technical layouts of gas feed-in systems can easily be applied. With these results construction guidelines has been formulated.
文摘The traditional practice of employing a two-stage coal-fed gasification process is to feed all of the oxygen to provide a vigorous amount of combustion in the first stage but only feed the coal without oxygen in the second stage to allow the endothermic gasification process to occur downstream of the second stage. One of the merits of this 2-stage practice is to keep the gasifier temperature low downstream from the 2nd stage. This helps to extend the life of refractory bricks, decrease gasifier shut-down frequency for scheduled maintenance, and reduce the maintenance costs. In this traditional 2-stage practice, the temperature reduction in the second stage is achieved at the expense of a higher than normal temperature in the first stage. This study investigates a concept totally opposite to the traditional two-stage coal feeding practices in which the injected oxygen is split between the two stages, while all the coal is fed into the first stage. The hypothesis of this two-stage oxygen injection is that a distributed oxygen injection scheme can also distribute the release of heat to a larger gasifier volume and, thus, reduce the peak temperature distribution in the gasifier. The increased life expectancy and reduced maintenance of the refractory bricks can prevail in the entire gasifier and not just downstream from the second stage. In this study, both experiments and computational simulations have been performed to verify the hypothesis. A series of experiments conducted at 2.5 - 3.0 bars shows that the peak temperature and temperature range in the gasifier do decrease from 600?C - 1550?C with one stage oxygen injection to 950?C - 1230?C with a 60 - 40 oxygen split-injection. The CFD results conducted at 2.5 bars show that 1) the carbon conversion ratio for different oxygen injection schemes are all above 95%;2) H2 (about 70% vol.) dominates the syngas composition at the exit;3) the 80% - 20% case yields the lowest peak temperature and the most uniform temperature distribution along the gasifier;and 4) the 40% - 60% case produces the syngas with the highest HHV. Both experimental data and CFD predictions verify the hypothesis that it is feasible to reduce the peak temperature and achieve more uniform temperature in the gasifier by adequately controlling a two-stage oxygen injection with only minor changes of the composition and heating value of the syngas.
基金financially supported by Beijing Advanced Innovation Center for Food Nutrition and Human HealthBasic Research Program of Science and Technology(2014FY111000).
文摘Background:Colistin(polymyxin E)is a kind of peptide antibiotic which has been approved in animal production for the purposes of disease prevention,treatment,and growth promotion.However,the wide use of colistin in animal feed may accelerate the spread of colistin-resistance gene MCR-1 from animal production to human beings,and its residue in animal-origin food may also pose serious health hazards to humans.Thus,it is necessary to develop corresponding analytical methods to monitor the addition of colistin in animal feed and the colistin residue in animal-origin food.Results:A one-step enzyme-linked immunosorbent assay(ELISA)and a lateral flow immunochromatographic assay(LFIA)for colistin were developed based on a newly developed monoclonal antibody.The ELISA showed a 50%inhibition value(IC50)of 9.7 ng/m L with assay time less than 60 min,while the LFIA had a strip reader-based detection limit of 0.87 ng/m L in phosphate buffer with assay time less than 15 min.For reducing the non-specific adsorption of colistin onto sample vial,the components of sample extraction solution were optimized and proved to greatly improve the assay accuracy.The spiked recovery experiment showed that the recoveries of colistin from feed,milk and meat samples were in the range of 77.83%to 113.38%with coefficient of variations less than 13%by ELISA analysis and less than 18%by LFIA analysis,respectively.Furthermore,actual sample analysis indicated that the two immunoassays can produce results consistent with instrumental analysis.Conclusions:The developed assays can be used for rapid qualitative or quantitative detection of colistin in animal feed and food.
文摘An analytical approach is described for the axisymmetric flow through a permeable near-sphere with a modification to boundary conditions in order to account permeability. The Stokes equation was solved by a regular perturbation technique up to the second order correction in epsilon representing the deviation from the radius of nondeformed sphere. The drag and the flow rate were calculated and the results were evaluated from the point of geometry and the permeability of the surface. An attempt also was made to apply the theory to the filter feeding problem. The filter appendages of small ecologically important aquatic organisms were modeled as axisymmetric permeable bodies, therefore a rough model for this problem was considered here as an oblate spheroid or near-sphere.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11072117,10802042,and 60904068)the Natural Science Foundation of Zhejiang Province,China (Grant No.Y6100023)+1 种基金the Natural Science Foundation of Ningbo,China (Grant No.2009B21003)the K.C.Wong Magna Fund in Ningbo University,China
文摘A modified coupled map car-following model is proposed, in which two successive vehicle headways in front of the considering vehicle is incorporated into the optimal velocity function. The steady state under certain conditions is obtained. An error system around the steady state is studied further. Moreover, the condition for the state having no traffic jam is derived. A new control scheme is presented to suppress the traffic jam in the modified coupled map car-following model under the open boundary. A control signal including the velocity differences between the following and the considering vehicles, and between the preceding and the considering vehicles is used. The condition under which the traffic jam can be well suppressed is analysed. The results are compared with that presented by t^onishi et al. (the KKH model). The simulation results show that the temporal behaviour obtained in our model is better than that in the KKH model. The simulation results are in good agreement with the theoretical analysis.