期刊文献+
共找到1,493篇文章
< 1 2 75 >
每页显示 20 50 100
DAMAGE DETECTION IN STRUCTURES USING MODIFIED BACK-PROPAGATION NEURAL NETWORKS 被引量:6
1
作者 Sima Yuzhou 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第4期358-370,共13页
A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of... A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of the modal test data from a 'healthy' structure.The trained networks which are subsequently fed with vibration measurements from the same structurein different stages have the capability of recognizing the location and the content of structuraldamage and thereby can monitor the health of the structure. A modified back-propagation neuralnetwork is proposed to solve the two practical problems encountered by the traditionalback-propagation method, i.e., slow learning progress and convergence to a false local minimum.Various training algorithms, types of the input layer and numbers of the nodes in the input layerare considered. Numerical example results from a 5-degree-of-freedom spring-mass structure andanalyses on the experimental data of an actual 5-storey-steel-frame demonstrate thatneural-networks-based method is a robust procedure and a practical tool for the detection ofstructural damage, and that the modified back-propagation algorithm could improve the computationalefficiency as well as the accuracy of detection. 展开更多
关键词 neural network modified back-propagation damage detection modal testdata health monitoring
下载PDF
Optimization of processing parameters for microwave drying of selenium-rich slag using incremental improved back-propagation neural network and response surface methodology 被引量:4
2
作者 李英伟 彭金辉 +2 位作者 梁贵安 李玮 张世敏 《Journal of Central South University》 SCIE EI CAS 2011年第5期1441-1447,共7页
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind... In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process. 展开更多
关键词 microwave drying response surface methodology optimization incremental improved back-propagation neural network PREDICTION
下载PDF
Modeling water and carbon fluxes above summer maize field in North China Plain with back-propagation neural networks 被引量:1
3
作者 秦钟 苏高利 +2 位作者 于强 胡秉民 李俊 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期418-426,共9页
In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes... In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant. 展开更多
关键词 Carbon dioxide Water vapor and heat fluxes Three-layer back-propagation neural networks
下载PDF
A hybrid model for short-term rainstorm forecasting based on a back-propagation neural network and synoptic diagnosis 被引量:1
4
作者 Guolu Gao Yang Li +2 位作者 Jiaqi Li Xueyun Zhou Ziqin Zhou 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第5期13-18,共6页
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network... Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features. 展开更多
关键词 RAINSTORM Short-term prediction method back-propagation neural network Hybrid forecast model
下载PDF
Temperature prediction model for a high-speed motorized spindle based on back-propagation neural network optimized by adaptive particle swarm optimization 被引量:1
5
作者 Lei Chunli Zhao Mingqi +2 位作者 Liu Kai Song Ruizhe Zhang Huqiang 《Journal of Southeast University(English Edition)》 EI CAS 2022年第3期235-241,共7页
To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is propos... To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools. 展开更多
关键词 temperature prediction high-speed motorized spindle particle swarm optimization algorithm back-propagation neural network ROBUSTNESS
下载PDF
Predict typhoon-induced storm surge deviation in a principal component back-propagation neural network model 被引量:1
6
作者 过仲阳 戴晓燕 +1 位作者 栗小东 叶属峰 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第1期219-226,共8页
To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We appl... To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We applied a principal component back-propagation neural network (PCBPNN) to predict the deviation in typhoon storm surge, in which data of the typhoon, upstream flood, and historical case studies were involved. With principal component analysis, 15 input factors were reduced to five principal components, and the application of the model was improved. Observation data from Huangpu Park in Shanghai, China were used to test the feasibility of the model. The results indicate that the model is capable of predicting a 12-hour warning before a typhoon surge. 展开更多
关键词 TYPHOON storm surges forecasts principal component back-propagation neural networks(PCBPNN) Changjiang (Yangtze) River estuary
下载PDF
Preparation of ZrB_2-SiC Powders via Carbothermal Reduction of Zircon and Prediction of Product Composition by Back-Propagation Artificial Neural Network 被引量:1
7
作者 LIU Jianghao DU Shuang +2 位作者 LI Faliang ZHANG Haijun ZHANG Shaoweia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1062-1069,共8页
Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and ... Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy. 展开更多
关键词 ZrB2-SiC powders carbothermal reduction back-propagation artificial neural networks (BP-ANNs) composition prediction
下载PDF
Sound Quality Prediction of Vehicle Interior Noise under Multiple Working Conditions Using Back-Propagation Neural Network Model 被引量:1
8
作者 Zutong Duan Yansong Wang Yanfeng Xing 《Journal of Transportation Technologies》 2015年第2期134-139,共6页
This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of ve... This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions. 展开更多
关键词 Multiple Working Conditions NEURAL network back-propagation SOUND Quality PREDICTION ANNOYANCE
下载PDF
A back-propagation neural-network-based displacement back analysis for the identification of the geomechanical parameters of the Yonglang landslide in China 被引量:1
9
作者 YU Fang-wei PENG Xiong-zhi SU Li-jun 《Journal of Mountain Science》 SCIE CSCD 2017年第9期1739-1750,共12页
Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located... Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides. 展开更多
关键词 back-propagation neural network Displacement back analysis Geomechanical parameters Landslide Numerical analysis Uniform design Xigeda formation
下载PDF
Simulation and optimization for synthetic technology of 2-chloro-4,6-dinitroresorcinol based on back-propagation neural network
10
作者 史瑞欣 Huang Yudong 《High Technology Letters》 EI CAS 2007年第3期283-286,共4页
Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental d... Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental data of homogeneous design as the training sample set and the technological parameters were optimized by it. The optimal technological parameters are as follows: the reaction time is 4h, the reaction temperature is 80℃, the molar ratio of NaOH to 4,6-dinitro-1,2,3-trichlorobenzene is 5.5:1, the molar ratio of methanol to 4,6-dinitro-1,2,3- trichlorobenzene is 11:1, and the molar ratio of water to 4,6-dinitro-1,2,3-trichlorobenzene is 70:1. Under the optimal conditions, three groups of experiments were performed and the average yield of 2-chloro-4,6-dinitroresorcinol is 96.64%, the absolute error of it with the predicted value is -1.07%. 展开更多
关键词 2-chlom-4 6-dinitroresorcinol synthetic technology OPTIMIZATION back-propagation neural network model constructing
下载PDF
Adaptive output feedback control for nonlinear time-delay systems using neural network 被引量:9
11
作者 Weisheng CHEN Junmin LI 《控制理论与应用(英文版)》 EI 2006年第4期313-320,共8页
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backsteppi... This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples. 展开更多
关键词 Time delay Nonlinear system Neural network BACKSTEPPING Output feedback Adaptive control
下载PDF
Feedback Scheduling of Model-based Networked Control Systems with Flexible Workload 被引量:4
12
作者 Xian-Ming Tang Jin-Shou Yu 《International Journal of Automation and computing》 EI 2008年第4期389-394,共6页
In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted a... In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure. 展开更多
关键词 Model-based networked control system state update time stability criterion feedback scheduling.
下载PDF
Synergistic inhibition of MEK and reciprocal feedback networks for targeted intervention in malignancy 被引量:2
13
作者 Yanan Li Qingrong Dong Yukun Cui 《Cancer Biology & Medicine》 SCIE CAS CSCD 2019年第3期415-434,共20页
The RAS-RAF-MEK-ERK signaling pathway(MAPK signaling pathway) plays a significant role in multiple pathological behaviors and is most frequently dysregulated in more than 30% of human cancers.As key elements in this p... The RAS-RAF-MEK-ERK signaling pathway(MAPK signaling pathway) plays a significant role in multiple pathological behaviors and is most frequently dysregulated in more than 30% of human cancers.As key elements in this pathway, MEK1/2 play crucial roles in tumorigenesis and the inhibition of apoptosis, which makes their inhibition an attractive antitumor strategy.Dozens of potent non-ATP-competitive allosteric MEK1/2 inhibitors have been developed that have produced substantial improvement in clinical outcomes over the past decade.However, the efficacy of these agents is limited, and response rates are variable in a wide range of tumors that harbor RAS and RAF mutations due to the development of resistance, which is derived mainly from the persistence of MAPK signaling and increased activation of the mutual feedback networks.Both intrinsic and acquired resistance to MEK inhibitors necessitates the synergistic targeting of both pathways to restore the therapeutic effects of a single agent.In this review, the significant role of the MAPK pathway in carcinogenesis and its therapeutic potential are comprehensively examined with a focus on MEK inhibitors.Then, the activation of feedback networks accompanying MEK inhibition is briefly reviewed.Combination strategies that involve the simultaneous inhibition of the original and resistance pathways are highlighted and elaborately described on the basis of the latest research progress.Finally, the obstacles to the development of MEK-related combination systems are discussed in order to lay the groundwork for their clinical application as frontline treatments for individual patients with MAPK-hyperactivated malignancies. 展开更多
关键词 MAPK SIGNALING PATHWAY MEK INHIBITOR reciprocal feedback networks combination therapy MALIGNANCY
下载PDF
Cascading failures in congested complex networks with feedback 被引量:2
14
作者 郑建风 高自友 +1 位作者 傅白白 李峰 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期4754-4759,共6页
In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distributio... In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distribution during the process of cascading failures. For this purpose, user equilibrium with variable demand is used as an alternative way to determine the traffic flow pattern throughout the network. Under the attack, cost function dynamics are introduced to discuss edge overload in complex networks, where each edge is assigned a finite capacity (controlled by parameter α). We find that scale-free networks without considering the effect of the feedback are expected to be very sensitive to α as compared with random networks, while this situation is largely improved after introducing the feedback. 展开更多
关键词 complex networks cascading failures feedback
下载PDF
Control of Halo-Chaos in Beam Transport Network via Neural Network Adaptation with Time-Delayed Feedback 被引量:4
15
作者 FANG Jin-Qing LUO Xiao-Shu Guo-Xian 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第1期117-120,共4页
Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field ad... Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network. 展开更多
关键词 beam transport network periodic focusing channels high-current proton beam HALO-CHAOS neural network adaptation control time-delayed feedback
下载PDF
Adaptive Backstepping Output Feedback Control for SISO Nonlinear System Using Fuzzy Neural Networks 被引量:2
16
作者 Shao-Cheng Tong Yong-Ming Li 《International Journal of Automation and computing》 EI 2009年第2期145-153,共9页
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the ... In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach. 展开更多
关键词 Nonlinear systems backstepping control adaptive fuzzy neural networks control state observer output feedback control.
下载PDF
Design and Implementation of an Adaptive Feedback Queue Algorithm over Open Flow Networks 被引量:5
17
作者 Jiawei Wu Xiuquan Qiao Junliang Chen 《China Communications》 SCIE CSCD 2018年第7期168-179,共12页
The concurrent presence of different types of traffic in multimedia applications might aggravate a burden on the underlying data network, which is bound to affect the transmission quality of the specified traffic. Rec... The concurrent presence of different types of traffic in multimedia applications might aggravate a burden on the underlying data network, which is bound to affect the transmission quality of the specified traffic. Recently, several proposals for fulfilling the quality of service(QoS) guarantees have been presented. However, they can only support coarse-grained QoS with no guarantee of throughput, jitter, delay or loss rate for different applications. To address these more challenging problems, an adaptive scheduling algorithm for Parallel data Processing with Multiple Feedback(PPMF) queues based on software defined networks(SDN) is proposed in this paper, which can guarantee the quality of service of high priority traffic in multimedia applications. PPMF combines the queue bandwidth feedback mechanism to realise the automatic adjustment of the queue bandwidth according to the priority of the packet and network conditions, which can effectively solve the problem of network congestion that has been experienced by some queues for a long time. Experimental results show PPMF significantly outperforms other existing scheduling approaches in achieving 35--80% improvement on average time delay by adjusting the bandwidth adaptively, thus ensuring the transmission quality of the specified traffic and avoiding effectively network congestion. 展开更多
关键词 multimedia streams software defined networks quality of service priority-based adaptive feedback queues
下载PDF
A Trust Management Scheme Based on Behavior Feedback for Opportunistic Networks 被引量:2
18
作者 CHEN Xi SUN Liang +1 位作者 MA Jian Feng MA Zhuo 《China Communications》 SCIE CSCD 2015年第4期117-129,共13页
In the harsh environment where n ode density is sparse, the slow-moving nodes cannot effectively utilize the encountering opportunities to realize the self-organized identity authentications, and do not have the chanc... In the harsh environment where n ode density is sparse, the slow-moving nodes cannot effectively utilize the encountering opportunities to realize the self-organized identity authentications, and do not have the chance to join the network routing. However, considering m ost of the communications in opportunistic networks are caused by forwarding operations, there is no need to establish the complete mutual authentications for each conversation. Accordingly, a novel trust management scheme is presented based on the information of behavior feedback, in order to complement the insufficiency of identity authentications. By utilizing the certificate chains based on social attributes, the mobile nodes build the local certificate graphs gradually to realize the web of "Identity Trust" relationship. Meanwhile, the successors generate Verified Feedback Packets for each positive behavior, and consequently the "Behavior Trust" relationship is formed for slow-moving nodes. Simulation result shows that, by implementing our trust scheme, the d elivery probability and trust reconstruction ratio can be effectively improved when there are large numbers of compromised nodes, and it means that our trust management scheme can efficiently explore and filter the trust nodes for secure forwarding in opportunistic networks. 展开更多
关键词 opportunistic networks trustmanagement key management forwardingprotocols verified feedback packet
下载PDF
Feedback LSTM Network Based on Attention for Image Description Generator 被引量:2
19
作者 Zhaowei Qu Bingyu Cao +3 位作者 Xiaoru Wang Fu Li Peirong Xu Luhan Zhang 《Computers, Materials & Continua》 SCIE EI 2019年第5期575-589,共15页
Images are complex multimedia data which contain rich semantic information.Most of current image description generator algorithms only generate plain description,with the lack of distinction between primary and second... Images are complex multimedia data which contain rich semantic information.Most of current image description generator algorithms only generate plain description,with the lack of distinction between primary and secondary object,leading to insufficient high-level semantic and accuracy under public evaluation criteria.The major issue is the lack of effective network on high-level semantic sentences generation,which contains detailed description for motion and state of the principal object.To address the issue,this paper proposes the Attention-based Feedback Long Short-Term Memory Network(AFLN).Based on existing codec framework,there are two independent sub tasks in our method:attention-based feedback LSTM network during decoding and the Convolutional Block Attention Module(CBAM)in the coding phase.First,we propose an attentionbased network to feedback the features corresponding to the generated word from the previous LSTM decoding unit.We implement feedback guidance through the related field mapping algorithm,which quantifies the correlation between previous word and latter word,so that the main object can be tracked with highlighted detailed description.Second,we exploit the attention idea and apply a lightweight and general module called CBAM after the last layer of VGG 16 pretraining network,which can enhance the expression of image coding features by combining channel and spatial dimension attention maps with negligible overheads.Extensive experiments on COCO dataset validate the superiority of our network over the state-of-the-art algorithms.Both scores and actual effects are proved.The BLEU 4 score increases from 0.291 to 0.301 while the CIDEr score rising from 0.912 to 0.952. 展开更多
关键词 Image description generator feedback LSTM network ATTENTION CBAM
下载PDF
Quantized dynamic output feedback control for networked control systems 被引量:1
20
作者 Chong Jiang Dexin Zou +1 位作者 Qingling Zhang Song Guo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1025-1032,共8页
The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a no... The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a novel networked control system model is described. This model includes many networkinduced features, such as multi-rate sampled-data, quantized signal, time-varying delay and packet dropout. By constructing suitable Lyapunov-Krasovskii functional, a less conservative stabilization criterion is established in terms of linear matrix inequalities. The quantized control strategy involves the updating values of the quantizer parameters μi(i = 1, 2)(μi take on countable sets of values which dependent on the information of the system measurement outputs and the control inputs). Furthermore, a numerical example is given to illustrate the effectiveness of the proposed method. 展开更多
关键词 networked control systems SAMPLED-DATA linear matrix inequalities quantized dynamic output feedback.
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部