Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, w...Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, we propose a novel intelligent passive detection method for aerial target based on reservoir computing networks. Specifically, delayed feedback networks are utilized to refine the direct signals from the satellite in the reference channels. In addition, the satellite direct wave interference in the monitoring channels adopts adaptive interference suppression using the minimum mean square error filter. Furthermore, we employ decoupling echo state networks to predict the clutter interference in the monitoring channels and construct the detection statistics accordingly. Finally, a multilayer perceptron is adopted to detect the echo signal after interference suppression. Extensive simulations is conducted to evaluate the performance of our proposed method. Results show that the detection probability is almost 100% when the signal-to-interference ratio of echo signal is-36 dB, which demonstrates that our proposed method achieves efficient passive detection for aerial targets in typical SAGIN scenarios.展开更多
Images are complex multimedia data which contain rich semantic information.Most of current image description generator algorithms only generate plain description,with the lack of distinction between primary and second...Images are complex multimedia data which contain rich semantic information.Most of current image description generator algorithms only generate plain description,with the lack of distinction between primary and secondary object,leading to insufficient high-level semantic and accuracy under public evaluation criteria.The major issue is the lack of effective network on high-level semantic sentences generation,which contains detailed description for motion and state of the principal object.To address the issue,this paper proposes the Attention-based Feedback Long Short-Term Memory Network(AFLN).Based on existing codec framework,there are two independent sub tasks in our method:attention-based feedback LSTM network during decoding and the Convolutional Block Attention Module(CBAM)in the coding phase.First,we propose an attentionbased network to feedback the features corresponding to the generated word from the previous LSTM decoding unit.We implement feedback guidance through the related field mapping algorithm,which quantifies the correlation between previous word and latter word,so that the main object can be tracked with highlighted detailed description.Second,we exploit the attention idea and apply a lightweight and general module called CBAM after the last layer of VGG 16 pretraining network,which can enhance the expression of image coding features by combining channel and spatial dimension attention maps with negligible overheads.Extensive experiments on COCO dataset validate the superiority of our network over the state-of-the-art algorithms.Both scores and actual effects are proved.The BLEU 4 score increases from 0.291 to 0.301 while the CIDEr score rising from 0.912 to 0.952.展开更多
Thefilter-x least mean square(FxLMS)algorithm is widely used in active noise control(ANC)systems.However,because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to ...Thefilter-x least mean square(FxLMS)algorithm is widely used in active noise control(ANC)systems.However,because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to update thefilter coefficients,it has a certain delay,usually has a slow convergence speed,and the system response time is long and easily affected by the learning rate leading to the lack of system stability,which often fails to achieve the desired control effect in practice.In this paper,we propose an active control algorithm with near-est-neighbor trap structure and neural network feedback mechanism to reduce the coefficient update time of the FxLMS algorithm and use the neural network feedback mechanism to realize the parameter update,which is called NNR-BPFxLMS algorithm.In the paper,the schematic diagram of the feedback control is given,and the performance of the algorithm is analyzed.Under various noise conditions,it is shown by simulation and experiment that the NNR-BPFxLMS algorithm has the following three advantages:in terms of performance,it has higher noise reduction under the same number of sampling points,i.e.,it has faster convergence speed,and by computer simulation and sound pipe experiment,for simple ideal line spectrum noise,compared with the convergence speed of NNR-BPFxLMS is improved by more than 95%compared with FxLMS algorithm,and the convergence speed of real noise is also improved by more than 70%.In terms of stability,NNR-BPFxLMS is insensitive to step size changes.In terms of tracking performance,its algorithm responds quickly to sudden changes in the noise spectrum and can cope with the complex control requirements of sudden changes in the noise spectrum.展开更多
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ...The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.展开更多
This paper developed the dynamic feedback neural network model to solve the convex nonlinear programming problem proposed by Leung et al. and introduced subgradient-based dynamic feedback neural networks to solve non-...This paper developed the dynamic feedback neural network model to solve the convex nonlinear programming problem proposed by Leung et al. and introduced subgradient-based dynamic feedback neural networks to solve non-differentiable convex optimization problems. For unconstrained non-differentiable convex optimization problem, on the assumption that the objective function is convex coercive, we proved that with arbitrarily given initial value, the trajectory of the feedback neural network constructed by a projection subgradient converges to an asymptotically stable equilibrium point which is also an optimal solution of the primal unconstrained problem. For constrained non-differentiable convex optimization problem, on the assumption that the objective function is convex coercive and the constraint functions are convex also, the energy functions sequence and corresponding dynamic feedback subneural network models based on a projection subgradient are successively constructed respectively, the convergence theorem is then obtained and the stopping condition is given. Furthermore, the effective algorithms are designed and some simulation experiments are illustrated.展开更多
In order to remotely monitor and maintain large-scale complex equipment in real time, China Telecom plans to create a total solution that integrates remote data collection, transmission, storage, analysis and predicti...In order to remotely monitor and maintain large-scale complex equipment in real time, China Telecom plans to create a total solution that integrates remote data collection, transmission, storage, analysis and prediction. This solution can provide manufacturers with proactive, systematic, integrated operation and maintenance service, and the data analysis and health forecasting are the most important part. This paper conducts health management for the turbine blades. Elman neural network, and improved Elman neural network, i.e., outputhidden feedback(OHF) Elman neural network are studied as the main research methods. The results verify the applicability of OHF Elman neural network.展开更多
We consider queueing networks (QN's) with feedback loops roamed by "intelligent" agents, able to select their routing on the basis of their measured waiting times at the QN nodes. This is an idealized model to di...We consider queueing networks (QN's) with feedback loops roamed by "intelligent" agents, able to select their routing on the basis of their measured waiting times at the QN nodes. This is an idealized model to discuss the dynamics of customers who stay loyal to a service supplier, provided their service time remains below a critical threshold. For these QN's, we show that the traffic flows may exhibit collective patterns typically encountered in multi-agent systems. In simple network topologies, the emergent cooperative behaviors manifest themselves via stable macroscopic temporal oscillations, synchronization of the queue contents and stabilization by noise phenomena. For a wide range of control parameters, the underlying presence of the law of large numbers enables us to use deterministic evolution laws to analytically characterize the cooperative evolution of our multi-agent systems. In particular, we study the case where the servers are sporadically subject, to failures altering their ordinary behavior.展开更多
In the past decades, various neural network models have been developed for modeling the behavior of human brain or performing problem-solving through simulating the behavior of human brain. The recurrent neural networ...In the past decades, various neural network models have been developed for modeling the behavior of human brain or performing problem-solving through simulating the behavior of human brain. The recurrent neural networks are the type of neural networks to model or simulate associative memory behavior of human being. A recurrent neural network (RNN) can be generally formalized as a dynamic system associated with two fundamental operators: one is the nonlinear activation operator deduced from the input-output properties of the involved neurons, and the other is the synaptic connections (a matrix) among the neurons. Through carefully examining properties of various activation functions used, we introduce a novel type of monotone operators, the uniformly pseudo-projectionanti-monotone (UPPAM) operators, to unify the various RNN models appeared in the literature. We develop a unified encoding and stability theory for the UPPAM network model when the time is discrete. The established model and theory not only unify but also jointly generalize the most known results of RNNs. The approach has lunched a visible step towards establishment of a unified mathematical theory of recurrent neural networks.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62071364in part by the Aeronautical Science Foundation of China under Grant 2020Z073081001+2 种基金in part by the Fundamental Research Funds for the Central Universities under Grant JB210104in part by the Shaanxi Provincial Key Research and Development Program under Grant 2019GY-043in part by the 111 Project under Grant B08038。
文摘Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, we propose a novel intelligent passive detection method for aerial target based on reservoir computing networks. Specifically, delayed feedback networks are utilized to refine the direct signals from the satellite in the reference channels. In addition, the satellite direct wave interference in the monitoring channels adopts adaptive interference suppression using the minimum mean square error filter. Furthermore, we employ decoupling echo state networks to predict the clutter interference in the monitoring channels and construct the detection statistics accordingly. Finally, a multilayer perceptron is adopted to detect the echo signal after interference suppression. Extensive simulations is conducted to evaluate the performance of our proposed method. Results show that the detection probability is almost 100% when the signal-to-interference ratio of echo signal is-36 dB, which demonstrates that our proposed method achieves efficient passive detection for aerial targets in typical SAGIN scenarios.
基金This research study is supported by the National Natural Science Foundation of China(No.61672108).
文摘Images are complex multimedia data which contain rich semantic information.Most of current image description generator algorithms only generate plain description,with the lack of distinction between primary and secondary object,leading to insufficient high-level semantic and accuracy under public evaluation criteria.The major issue is the lack of effective network on high-level semantic sentences generation,which contains detailed description for motion and state of the principal object.To address the issue,this paper proposes the Attention-based Feedback Long Short-Term Memory Network(AFLN).Based on existing codec framework,there are two independent sub tasks in our method:attention-based feedback LSTM network during decoding and the Convolutional Block Attention Module(CBAM)in the coding phase.First,we propose an attentionbased network to feedback the features corresponding to the generated word from the previous LSTM decoding unit.We implement feedback guidance through the related field mapping algorithm,which quantifies the correlation between previous word and latter word,so that the main object can be tracked with highlighted detailed description.Second,we exploit the attention idea and apply a lightweight and general module called CBAM after the last layer of VGG 16 pretraining network,which can enhance the expression of image coding features by combining channel and spatial dimension attention maps with negligible overheads.Extensive experiments on COCO dataset validate the superiority of our network over the state-of-the-art algorithms.Both scores and actual effects are proved.The BLEU 4 score increases from 0.291 to 0.301 while the CIDEr score rising from 0.912 to 0.952.
基金This work was supported by the National Key R&D Program of China(Grant No.2020YFA040070).
文摘Thefilter-x least mean square(FxLMS)algorithm is widely used in active noise control(ANC)systems.However,because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to update thefilter coefficients,it has a certain delay,usually has a slow convergence speed,and the system response time is long and easily affected by the learning rate leading to the lack of system stability,which often fails to achieve the desired control effect in practice.In this paper,we propose an active control algorithm with near-est-neighbor trap structure and neural network feedback mechanism to reduce the coefficient update time of the FxLMS algorithm and use the neural network feedback mechanism to realize the parameter update,which is called NNR-BPFxLMS algorithm.In the paper,the schematic diagram of the feedback control is given,and the performance of the algorithm is analyzed.Under various noise conditions,it is shown by simulation and experiment that the NNR-BPFxLMS algorithm has the following three advantages:in terms of performance,it has higher noise reduction under the same number of sampling points,i.e.,it has faster convergence speed,and by computer simulation and sound pipe experiment,for simple ideal line spectrum noise,compared with the convergence speed of NNR-BPFxLMS is improved by more than 95%compared with FxLMS algorithm,and the convergence speed of real noise is also improved by more than 70%.In terms of stability,NNR-BPFxLMS is insensitive to step size changes.In terms of tracking performance,its algorithm responds quickly to sudden changes in the noise spectrum and can cope with the complex control requirements of sudden changes in the noise spectrum.
基金supported by the National Natural Science Foundation of China (9071602860974106)
文摘The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.
基金the National 973 Project (Grant No. 2002cb312205) the National Natural Science Foundation of China (Grant No. 60574077).
文摘This paper developed the dynamic feedback neural network model to solve the convex nonlinear programming problem proposed by Leung et al. and introduced subgradient-based dynamic feedback neural networks to solve non-differentiable convex optimization problems. For unconstrained non-differentiable convex optimization problem, on the assumption that the objective function is convex coercive, we proved that with arbitrarily given initial value, the trajectory of the feedback neural network constructed by a projection subgradient converges to an asymptotically stable equilibrium point which is also an optimal solution of the primal unconstrained problem. For constrained non-differentiable convex optimization problem, on the assumption that the objective function is convex coercive and the constraint functions are convex also, the energy functions sequence and corresponding dynamic feedback subneural network models based on a projection subgradient are successively constructed respectively, the convergence theorem is then obtained and the stopping condition is given. Furthermore, the effective algorithms are designed and some simulation experiments are illustrated.
基金the National Natural Science Foundation of China(Nos.51505288 and 51875359)the TBT Project of Shanghai(No.18TBT003)the Project of Shanghai Telecom(No.17C1ZA0069SH301)
文摘In order to remotely monitor and maintain large-scale complex equipment in real time, China Telecom plans to create a total solution that integrates remote data collection, transmission, storage, analysis and prediction. This solution can provide manufacturers with proactive, systematic, integrated operation and maintenance service, and the data analysis and health forecasting are the most important part. This paper conducts health management for the turbine blades. Elman neural network, and improved Elman neural network, i.e., outputhidden feedback(OHF) Elman neural network are studied as the main research methods. The results verify the applicability of OHF Elman neural network.
基金the Fonds National Suisse de la Recherche Scientifique under Grant No.200021-109191/1the Portuguese Fundaao para a Cinca e a Tecnologica(FCT Bolsa FEDER/POCTI-SFA-1-219)The original version was presented on ICSSSM'06.
文摘We consider queueing networks (QN's) with feedback loops roamed by "intelligent" agents, able to select their routing on the basis of their measured waiting times at the QN nodes. This is an idealized model to discuss the dynamics of customers who stay loyal to a service supplier, provided their service time remains below a critical threshold. For these QN's, we show that the traffic flows may exhibit collective patterns typically encountered in multi-agent systems. In simple network topologies, the emergent cooperative behaviors manifest themselves via stable macroscopic temporal oscillations, synchronization of the queue contents and stabilization by noise phenomena. For a wide range of control parameters, the underlying presence of the law of large numbers enables us to use deterministic evolution laws to analytically characterize the cooperative evolution of our multi-agent systems. In particular, we study the case where the servers are sporadically subject, to failures altering their ordinary behavior.
基金Supported by the National Basic Research Program of China (973 Program) (Grant No. 2007CB311002), the National Nature Science Foundation of China (Grant No. 61075054) and the Fundamental Research Funds for the Central Universities (Grant No. xjj20100087)
文摘In the past decades, various neural network models have been developed for modeling the behavior of human brain or performing problem-solving through simulating the behavior of human brain. The recurrent neural networks are the type of neural networks to model or simulate associative memory behavior of human being. A recurrent neural network (RNN) can be generally formalized as a dynamic system associated with two fundamental operators: one is the nonlinear activation operator deduced from the input-output properties of the involved neurons, and the other is the synaptic connections (a matrix) among the neurons. Through carefully examining properties of various activation functions used, we introduce a novel type of monotone operators, the uniformly pseudo-projectionanti-monotone (UPPAM) operators, to unify the various RNN models appeared in the literature. We develop a unified encoding and stability theory for the UPPAM network model when the time is discrete. The established model and theory not only unify but also jointly generalize the most known results of RNNs. The approach has lunched a visible step towards establishment of a unified mathematical theory of recurrent neural networks.