Climate feedbacks have been usually estimated using changes in radiative effects associated with increased global-mean surface temperature. Feedback uncertainties, however, are not only functions of global-mean surfac...Climate feedbacks have been usually estimated using changes in radiative effects associated with increased global-mean surface temperature. Feedback uncertainties, however, are not only functions of global-mean surface temperature increase. In projections by global climate models, it has been demonstrated that the geographical variation of sea surface temperature change brings significant uncertainties into atmospheric circulation and precipitation responses at regional scales. Here we show that the spatial pattern of surface warming is a major contributor to uncertainty in the combined water vapour-lapse rate feedback. This is demonstrated by computing the global-mean radiative effects of changes in air temperature and relative humidity simulated by 31 climate models using a methodology based on radiative kernels. Our results highlight the important contribution of regional climate change to the uncertainty in climate feedbacks, and identify the regions of the world where constraining surface warming patterns would be most effective for higher skill of climate projections.展开更多
This study shows that the heretofore assumed condition for no temperature-profile (TP)/lapse-rate feedback, for all altitudes z, or , in fact yields a negative feedback. The correct condition for no TP feedback is for...This study shows that the heretofore assumed condition for no temperature-profile (TP)/lapse-rate feedback, for all altitudes z, or , in fact yields a negative feedback. The correct condition for no TP feedback is for all z, where Ts is the surface temperature. This condition translates into a uniform increase (decrease) in lapse rate with altitude for an increase (decrease) in Ts. The temperature changes caused by a change in solar irradiance and/or planetary albedo satisfy the condition for no TP feedback. The temperature changes caused by a change in greenhouse gas concentration do not satisfy the condition for no TP feedback and, instead, yield a positive feedback.展开更多
The attraction domains of memory patterns and exponential convergence rate of the network trajectories to memory patterns for continuous feedback associative memory are estimated. These results can be used for evaluat...The attraction domains of memory patterns and exponential convergence rate of the network trajectories to memory patterns for continuous feedback associative memory are estimated. These results can be used for evaluation of error-correction capability and the synthesis procedures for continuous-time associative memory neural networks.展开更多
Most existing force feedback methods are still difficult to meet the requirements of real-time force calculation in virtual assembly and operation with complex objects. In addition, there is often an assumption that t...Most existing force feedback methods are still difficult to meet the requirements of real-time force calculation in virtual assembly and operation with complex objects. In addition, there is often an assumption that the controlled objects are completely flee and the target object is only completely fixed or flee, thus, the dynamics of the kinematic chain where the controlled objects are located are neglected during the physical simulation of the product manipulation with force feedback interaction. This paper proposes a physical simulation method of product assembly and operation manipulation based on statistically learned contact force prediction model and the coupling of force feedback and dynamics. In the proposed method, based on hidden Markov model (HMM) and local weighting learning (LWL), contact force prediction model is constructed, which can estimate the contact force in real time during interaction. Based on computational load balance model, the computing resources are dynamically assigned and the dynamics integral step is optimized. In addition, smoothing process is performed to the force feedback on the synchronization points. Consequently, we can solve the coupling and synchronization problems of high-frequency feedback force servo. low-frequency dynamics solver servo and scene rendering servo, and realize highly stable and accurate force feedback in the physical simulation of product assembly and operation manipulation. This research proposes a physical simulation method of product assembly and operation manipulation.展开更多
A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered. The control is a shear force in proportion to velocity. It is known that uniform exponential stability can...A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered. The control is a shear force in proportion to velocity. It is known that uniform exponential stability can be achieved with velocity feedback. A sensitivity asymptotic analysis of the system's eigenvalues and eigenfunctions is set up. The authors prove that, for K-1 epsilon (0, + infinity), all of the generalized eigenvectors of A form a Riesz basis of H. It is also proved that the optimal exponential decay rate can be obtained from the spectrum of the system for 0 < K-1 < + infinity.展开更多
In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical...In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical analysis and the numerical simulation are presented. By investigating the performances of the nonlinear systems with different strengths of error feedback, we argue that the presented system may provide guidance for practical nonlinear signal processing.展开更多
Since the interaction between atmospheric synoptic eddy (SE) (2-8 days) activity and low-frequency (LF) (monthly) flow (referred to as SELF) plays an essential role in generating and maintaining dominant cli...Since the interaction between atmospheric synoptic eddy (SE) (2-8 days) activity and low-frequency (LF) (monthly) flow (referred to as SELF) plays an essential role in generating and maintaining dominant climate modes, an evaluation of the performance of BCC_CSMI.I(m) in simulating the SE feedback onto the LF flow is given in this paper. The model captures well the major spatial features of climatological eddy vorticity forcing, eddy-induced growth rate, and patterns of SELF feedback for the climate modes with large magnitudes in cold seasons and small magnitudes in warm seasons for both the Northern and Southern Hemisphere. As in observations, the eddy-induced growth rate and SELF feedback patterns in the model also show positive SE feedback. Overall, the relationships between SE and LF flow show that BCC_CSM1. l(m) satisfactorily captures the basic features of positive SE feedback, which demonstrates the simulation skill of the model for LF variability. Specifically, such an evaluation can help to find model biases of BCC_CSM1.1 (m) in simulating SE feedback, which will provide a reference for the model's application.展开更多
This paper analyzes fault-tolerance over the entire design life of a class of multiple-hop wireless networks, where cooperative transmission schemes are used. The networks are subject to both node failure and random c...This paper analyzes fault-tolerance over the entire design life of a class of multiple-hop wireless networks, where cooperative transmission schemes are used. The networks are subject to both node failure and random channel fading. A node lifetime distribution is modeled with an increasing failure rate, where the node power consumption level enters the parameters of the distribution. A method for assessing both link and network reliabilities projected at the network's design life is developed. Link reliability is enhanced through use of redundant nodes. The number of redundant nodes is restricted by the cooperative transmission scheme used. The link reliability is then used to establish a re-transmission control policy that minimizes an expected cost involving power, bandwidth expenditures, and packet loss. The benefit and cost of feedback in network operations are examined. The results of a simulation study under specific node processing times are presented. The study quantifies the effect of loop closure frequency, acknowledgment deadline, and nodes' storage capacity on the performance of the network in terms of network lifetime, packet loss rate, and false alarm rate. The study concludes that in a network where energy is severely constrained, feedback must be applied judiciously.展开更多
基金The National Natural Science Foundation of China under contract No. 41675070the Shanghai Eastern Scholar Program under contract No. TP2015049+1 种基金the Expert Development Fund under contract No. 2017033the China Scholarship Council under contract No. 201506330007.
文摘Climate feedbacks have been usually estimated using changes in radiative effects associated with increased global-mean surface temperature. Feedback uncertainties, however, are not only functions of global-mean surface temperature increase. In projections by global climate models, it has been demonstrated that the geographical variation of sea surface temperature change brings significant uncertainties into atmospheric circulation and precipitation responses at regional scales. Here we show that the spatial pattern of surface warming is a major contributor to uncertainty in the combined water vapour-lapse rate feedback. This is demonstrated by computing the global-mean radiative effects of changes in air temperature and relative humidity simulated by 31 climate models using a methodology based on radiative kernels. Our results highlight the important contribution of regional climate change to the uncertainty in climate feedbacks, and identify the regions of the world where constraining surface warming patterns would be most effective for higher skill of climate projections.
文摘This study shows that the heretofore assumed condition for no temperature-profile (TP)/lapse-rate feedback, for all altitudes z, or , in fact yields a negative feedback. The correct condition for no TP feedback is for all z, where Ts is the surface temperature. This condition translates into a uniform increase (decrease) in lapse rate with altitude for an increase (decrease) in Ts. The temperature changes caused by a change in solar irradiance and/or planetary albedo satisfy the condition for no TP feedback. The temperature changes caused by a change in greenhouse gas concentration do not satisfy the condition for no TP feedback and, instead, yield a positive feedback.
基金Supported by the National Natural Science Foundation of Chinathe Climb Project of China
文摘The attraction domains of memory patterns and exponential convergence rate of the network trajectories to memory patterns for continuous feedback associative memory are estimated. These results can be used for evaluation of error-correction capability and the synthesis procedures for continuous-time associative memory neural networks.
基金Supported by National Natural Science Foundation of China(51475418)National Basic Research 973 Program of China(2011CB706503)Science Fund for Creative Research Groups of National Natural Science Foundation of China(51221004)
文摘Most existing force feedback methods are still difficult to meet the requirements of real-time force calculation in virtual assembly and operation with complex objects. In addition, there is often an assumption that the controlled objects are completely flee and the target object is only completely fixed or flee, thus, the dynamics of the kinematic chain where the controlled objects are located are neglected during the physical simulation of the product manipulation with force feedback interaction. This paper proposes a physical simulation method of product assembly and operation manipulation based on statistically learned contact force prediction model and the coupling of force feedback and dynamics. In the proposed method, based on hidden Markov model (HMM) and local weighting learning (LWL), contact force prediction model is constructed, which can estimate the contact force in real time during interaction. Based on computational load balance model, the computing resources are dynamically assigned and the dynamics integral step is optimized. In addition, smoothing process is performed to the force feedback on the synchronization points. Consequently, we can solve the coupling and synchronization problems of high-frequency feedback force servo. low-frequency dynamics solver servo and scene rendering servo, and realize highly stable and accurate force feedback in the physical simulation of product assembly and operation manipulation. This research proposes a physical simulation method of product assembly and operation manipulation.
文摘A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered. The control is a shear force in proportion to velocity. It is known that uniform exponential stability can be achieved with velocity feedback. A sensitivity asymptotic analysis of the system's eigenvalues and eigenfunctions is set up. The authors prove that, for K-1 epsilon (0, + infinity), all of the generalized eigenvectors of A form a Riesz basis of H. It is also proved that the optimal exponential decay rate can be obtained from the spectrum of the system for 0 < K-1 < + infinity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61171147 and 60702022)
文摘In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical analysis and the numerical simulation are presented. By investigating the performances of the nonlinear systems with different strengths of error feedback, we argue that the presented system may provide guidance for practical nonlinear signal processing.
基金supported by the National Science Foundation of China(Grant No.41375062)the National Basic(973)Research Program of China(Grant No.2015 CB453203)+1 种基金a China Meteorological Administration(CMA)Special Project(Grant No.GYHY201406022)a CMA Key Project of Meteorological Prediction[Grant No.YBGJXM(2017)05]
文摘Since the interaction between atmospheric synoptic eddy (SE) (2-8 days) activity and low-frequency (LF) (monthly) flow (referred to as SELF) plays an essential role in generating and maintaining dominant climate modes, an evaluation of the performance of BCC_CSMI.I(m) in simulating the SE feedback onto the LF flow is given in this paper. The model captures well the major spatial features of climatological eddy vorticity forcing, eddy-induced growth rate, and patterns of SELF feedback for the climate modes with large magnitudes in cold seasons and small magnitudes in warm seasons for both the Northern and Southern Hemisphere. As in observations, the eddy-induced growth rate and SELF feedback patterns in the model also show positive SE feedback. Overall, the relationships between SE and LF flow show that BCC_CSM1. l(m) satisfactorily captures the basic features of positive SE feedback, which demonstrates the simulation skill of the model for LF variability. Specifically, such an evaluation can help to find model biases of BCC_CSM1.1 (m) in simulating SE feedback, which will provide a reference for the model's application.
基金National Natural Science Foundation of China (60674036, 60974003), the Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (JQ200919), the Program for New Century Excellent Talents in University of China (NCET-07-0513), the Key Science and Technique Foundation of Ministry of Education of China (108079), the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China (2007BS01010)
基金This work was partly supported by the US AFOSR (No. FA9550-06-0456 and FA9550-06-10249).
文摘This paper analyzes fault-tolerance over the entire design life of a class of multiple-hop wireless networks, where cooperative transmission schemes are used. The networks are subject to both node failure and random channel fading. A node lifetime distribution is modeled with an increasing failure rate, where the node power consumption level enters the parameters of the distribution. A method for assessing both link and network reliabilities projected at the network's design life is developed. Link reliability is enhanced through use of redundant nodes. The number of redundant nodes is restricted by the cooperative transmission scheme used. The link reliability is then used to establish a re-transmission control policy that minimizes an expected cost involving power, bandwidth expenditures, and packet loss. The benefit and cost of feedback in network operations are examined. The results of a simulation study under specific node processing times are presented. The study quantifies the effect of loop closure frequency, acknowledgment deadline, and nodes' storage capacity on the performance of the network in terms of network lifetime, packet loss rate, and false alarm rate. The study concludes that in a network where energy is severely constrained, feedback must be applied judiciously.