The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supp...The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm.展开更多
Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance...Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance keeping, lane keeping and changing and other functionalities. The modern automobile is a complex system of systems. How the functionalities of advanced driver assistance are implemented and coordinated across the systems of the vehicle is generally not made available to the wider research community by the developers and manufactures. This paper seeks to begin filling this gap by assembling open source physics models of the vehicle dynamics and ADAS command models. Additionally, in order to facilitate ADAS development and testing without having access to the details of ADAS, a coordinated control architecture for motion management is also proposed for distributing ADAS motion control commands over vehicle systems. The architecture is demonstrated in a case study where motion is coordinated between the steering and the braking systems, which are typically used only for a single functionality. The integrated vehicle and system dynamics using the coordinated control architecture are simulated for various driving tasks. It is seen that improved trajectory following can be achieved by the proposed coordinated control architecture. The models, simulations and control architecture are made available for open access.展开更多
Nowadays, biological resource in prey-predator ecosystem is commercially harvested and sold with aim of achieving economic interest. Furthermore, harvest effort is usually influ- enced by variation of economic interes...Nowadays, biological resource in prey-predator ecosystem is commercially harvested and sold with aim of achieving economic interest. Furthermore, harvest effort is usually influ- enced by variation of economic interest of harvesting and spatial heterogeneous environ- ment. In this paper, a delayed differential-algebraic bio-economic model is proposed, which is utilized to investigate interaction and coexistence mechanism of biological pop- ulation in the harvested ecosystem due to the variation of economic interest of harvesting as well as the change of population spatial diffusion and gestation delay. Local stability analysis of the proposed model without gestation delay and diffusion reveals that there is a phenomenon of singularity induced bifurcation due to the variation of economic interest of harvesting, and state feedback controllers are designed to stabilize the pro- posed model at the interior equilibrium. Furthermore, local stability of the proposed model with gestation delay and diffusion is studied, which reveals that the interior equi- librium loses its stability at some critical values of gestation delay and corresponding cycle occurs. It is also shown that population spatial diffusion and harvesting have a stabilizing effect on population dynamics. Finally, numerical simulations are carried out to show consistency with theoretical analysis obtained in this paper.展开更多
This paper addresses robust controller design for uncertain linear systems via a dynamic observer-based controller. A dynamic observer is an alternative structure for a classical observer which can be regarded as a ge...This paper addresses robust controller design for uncertain linear systems via a dynamic observer-based controller. A dynamic observer is an alternative structure for a classical observer which can be regarded as a general form of a usual observer and has additional degrees of freedom in the observer structure. Using this new observer structure, a new observer-based controller for linear systems is proposed. Some strict linear matrix inequalities (LMIs) have been given to find the dynamic observer parameters and controller gain. It is shown that dynamic observer can be used effectively for tackling the drawbacks of the classical observer-based robust controller design methods. As an advantage, LMIs are derived even in the presence of uncertainties in system, input and output matrices simultaneously, whereas by using the traditional observer, bilinear matrix inequalities (BMIs) are given in the presence of such uncertainties. Moreover, the proposed LMIs do not imply the equality constraint. Simulation results are used to illustrate the effectiveness of the proposed design technique.展开更多
基金supported by National Natural Science Foundation of China(No.50977086)
文摘The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm.
基金supported by the Programme for Simulation Innovation(PSI)
文摘Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance keeping, lane keeping and changing and other functionalities. The modern automobile is a complex system of systems. How the functionalities of advanced driver assistance are implemented and coordinated across the systems of the vehicle is generally not made available to the wider research community by the developers and manufactures. This paper seeks to begin filling this gap by assembling open source physics models of the vehicle dynamics and ADAS command models. Additionally, in order to facilitate ADAS development and testing without having access to the details of ADAS, a coordinated control architecture for motion management is also proposed for distributing ADAS motion control commands over vehicle systems. The architecture is demonstrated in a case study where motion is coordinated between the steering and the braking systems, which are typically used only for a single functionality. The integrated vehicle and system dynamics using the coordinated control architecture are simulated for various driving tasks. It is seen that improved trajectory following can be achieved by the proposed coordinated control architecture. The models, simulations and control architecture are made available for open access.
文摘Nowadays, biological resource in prey-predator ecosystem is commercially harvested and sold with aim of achieving economic interest. Furthermore, harvest effort is usually influ- enced by variation of economic interest of harvesting and spatial heterogeneous environ- ment. In this paper, a delayed differential-algebraic bio-economic model is proposed, which is utilized to investigate interaction and coexistence mechanism of biological pop- ulation in the harvested ecosystem due to the variation of economic interest of harvesting as well as the change of population spatial diffusion and gestation delay. Local stability analysis of the proposed model without gestation delay and diffusion reveals that there is a phenomenon of singularity induced bifurcation due to the variation of economic interest of harvesting, and state feedback controllers are designed to stabilize the pro- posed model at the interior equilibrium. Furthermore, local stability of the proposed model with gestation delay and diffusion is studied, which reveals that the interior equi- librium loses its stability at some critical values of gestation delay and corresponding cycle occurs. It is also shown that population spatial diffusion and harvesting have a stabilizing effect on population dynamics. Finally, numerical simulations are carried out to show consistency with theoretical analysis obtained in this paper.
文摘This paper addresses robust controller design for uncertain linear systems via a dynamic observer-based controller. A dynamic observer is an alternative structure for a classical observer which can be regarded as a general form of a usual observer and has additional degrees of freedom in the observer structure. Using this new observer structure, a new observer-based controller for linear systems is proposed. Some strict linear matrix inequalities (LMIs) have been given to find the dynamic observer parameters and controller gain. It is shown that dynamic observer can be used effectively for tackling the drawbacks of the classical observer-based robust controller design methods. As an advantage, LMIs are derived even in the presence of uncertainties in system, input and output matrices simultaneously, whereas by using the traditional observer, bilinear matrix inequalities (BMIs) are given in the presence of such uncertainties. Moreover, the proposed LMIs do not imply the equality constraint. Simulation results are used to illustrate the effectiveness of the proposed design technique.