The modeling and motion control of a universal part feeder is addressed. The feeder consists of a flat plate (or called bed) and a part placed on the plate. The bed can vibrate side-by-side (in x axis), back and f...The modeling and motion control of a universal part feeder is addressed. The feeder consists of a flat plate (or called bed) and a part placed on the plate. The bed can vibrate side-by-side (in x axis), back and forth (in y axis), clockwise and counter clockwise (about z axis), actuated by three linear motors (voice coils). When the bed does these vibrations, the part placed on the plat will have position and/or orientation change due to the interaction between the two contact surfaces. By controlling the ways in which the plate vibrates, the position and orientation of the part can be controlled. The two vibration profiles of the bed are investigated in the research: the high-low vibration mode and the bang-bang vibration mode. The motion equations of the bed and the part as well as the control schemes for the high-low vibration mode are presented. Both simulation and real-time testing verify the system's dynamic model and indicate the feasibilities of the developed control laws.展开更多
This paper introduces a kind of Feeder Control Units (FCUs) which treat feeders or main transformers as its objects. Being carefully designed, the FCU can separately meet the requirements such as signals’ acquisition...This paper introduces a kind of Feeder Control Units (FCUs) which treat feeders or main transformers as its objects. Being carefully designed, the FCU can separately meet the requirements such as signals’ acquisition, local control, on-time switchgear interlocking, etc. Equipped with a sort of high-speed serial communicahon interface, the FCUs can be distributively arranged near or into the switchgear, therefore a kind of distributed substation supervisory system can be formed.展开更多
文摘The modeling and motion control of a universal part feeder is addressed. The feeder consists of a flat plate (or called bed) and a part placed on the plate. The bed can vibrate side-by-side (in x axis), back and forth (in y axis), clockwise and counter clockwise (about z axis), actuated by three linear motors (voice coils). When the bed does these vibrations, the part placed on the plat will have position and/or orientation change due to the interaction between the two contact surfaces. By controlling the ways in which the plate vibrates, the position and orientation of the part can be controlled. The two vibration profiles of the bed are investigated in the research: the high-low vibration mode and the bang-bang vibration mode. The motion equations of the bed and the part as well as the control schemes for the high-low vibration mode are presented. Both simulation and real-time testing verify the system's dynamic model and indicate the feasibilities of the developed control laws.
文摘This paper introduces a kind of Feeder Control Units (FCUs) which treat feeders or main transformers as its objects. Being carefully designed, the FCU can separately meet the requirements such as signals’ acquisition, local control, on-time switchgear interlocking, etc. Equipped with a sort of high-speed serial communicahon interface, the FCUs can be distributively arranged near or into the switchgear, therefore a kind of distributed substation supervisory system can be formed.