The compensation current of the arc-suppressing coil makes the phase and amplitude of zero-sequence measurement current of the earthed fault feeder to vary. It is very hard to detect the fault feeder by using existing...The compensation current of the arc-suppressing coil makes the phase and amplitude of zero-sequence measurement current of the earthed fault feeder to vary. It is very hard to detect the fault feeder by using existing detectors based on single method. In this paper, integrative feeder selection strategy—zero sequence current increment method and the direction of transient current— is put forward. Based on the integrative feeder selection strategy, the design of fault-feeder selection device for one-phase-to ground fault on resonance grounding system is presented. For the purpose of testing and validating the operating principle of the device, the experiment of single-phase-to-ground fault has been carried out on the simulation of 1.2 kV power network. The results from many repeat experiments show that stability of the fault selection device is satisfactory.展开更多
现行风电场汇集线路电流保护存在灵敏性高而选择性不足的问题,与风电并网的低电压穿越(low voltage ride through,LVRT)控制不匹配。论文首先推导了撬棒投入期间双馈风机的短路电流计算公式,阐明了考虑LVRT的双馈风机的短路电流特性。...现行风电场汇集线路电流保护存在灵敏性高而选择性不足的问题,与风电并网的低电压穿越(low voltage ride through,LVRT)控制不匹配。论文首先推导了撬棒投入期间双馈风机的短路电流计算公式,阐明了考虑LVRT的双馈风机的短路电流特性。然后利用IEC60909标准等效电源法推导了风电机组故障、馈线故障和馈线外部故障三类故障下的馈线短路电流计算公式,得到馈线短路电流与故障点位置、接入电网强度、公共连接点电压跌落程度等因素的关系,给出了馈线短路电流随着故障点位置、接入电网强度变化的曲线。基于上述理论分析最终提出了一种与LVRT配合的馈线电流保护整定方案,并根据模型仿真结果进行了整定计算实例分析。展开更多
文摘The compensation current of the arc-suppressing coil makes the phase and amplitude of zero-sequence measurement current of the earthed fault feeder to vary. It is very hard to detect the fault feeder by using existing detectors based on single method. In this paper, integrative feeder selection strategy—zero sequence current increment method and the direction of transient current— is put forward. Based on the integrative feeder selection strategy, the design of fault-feeder selection device for one-phase-to ground fault on resonance grounding system is presented. For the purpose of testing and validating the operating principle of the device, the experiment of single-phase-to-ground fault has been carried out on the simulation of 1.2 kV power network. The results from many repeat experiments show that stability of the fault selection device is satisfactory.
文摘现行风电场汇集线路电流保护存在灵敏性高而选择性不足的问题,与风电并网的低电压穿越(low voltage ride through,LVRT)控制不匹配。论文首先推导了撬棒投入期间双馈风机的短路电流计算公式,阐明了考虑LVRT的双馈风机的短路电流特性。然后利用IEC60909标准等效电源法推导了风电机组故障、馈线故障和馈线外部故障三类故障下的馈线短路电流计算公式,得到馈线短路电流与故障点位置、接入电网强度、公共连接点电压跌落程度等因素的关系,给出了馈线短路电流随着故障点位置、接入电网强度变化的曲线。基于上述理论分析最终提出了一种与LVRT配合的馈线电流保护整定方案,并根据模型仿真结果进行了整定计算实例分析。