期刊文献+
共找到738篇文章
< 1 2 37 >
每页显示 20 50 100
Generalized load graphical forecasting method based on modal decomposition
1
作者 Lizhen Wu Peixin Chang +1 位作者 Wei Chen Tingting Pei 《Global Energy Interconnection》 EI CSCD 2024年第2期166-178,共13页
In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su... In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method. 展开更多
关键词 load forecasting Generalized load Image processing DenseNet Modal decomposition
下载PDF
Electricity Demand Time Series Forecasting Based on Empirical Mode Decomposition and Long Short-Term Memory 被引量:1
2
作者 Saman Taheri Behnam Talebjedi Timo Laukkanen 《Energy Engineering》 EI 2021年第6期1577-1594,共18页
Load forecasting is critical for a variety of applications in modern energy systems.Nonetheless,forecasting is a difficult task because electricity load profiles are tied with uncertain,non-linear,and non-stationary s... Load forecasting is critical for a variety of applications in modern energy systems.Nonetheless,forecasting is a difficult task because electricity load profiles are tied with uncertain,non-linear,and non-stationary signals.To address these issues,long short-term memory(LSTM),a machine learning algorithm capable of learning temporal dependencies,has been extensively integrated into load forecasting in recent years.To further increase the effectiveness of using LSTM for demand forecasting,this paper proposes a hybrid prediction model that incorporates LSTM with empirical mode decomposition(EMD).EMD algorithm breaks down a load time-series data into several sub-series called intrinsic mode functions(IMFs).For each of the derived IMFs,a different LSTM model is trained.Finally,the outputs of all the individual LSTM learners are fed to a meta-learner to provide an aggregated output for the energy demand prediction.The suggested methodology is applied to the California ISO dataset to demonstrate its applicability.Additionally,we compare the output of the proposed algorithm to a single LSTM and two state-of-the-art data-driven models,specifically XGBoost,and logistic regression(LR).The proposed hybrid model outperforms single LSTM,LR,and XGBoost by,35.19%,54%,and 49.25%for short-term,and 36.3%,34.04%,32%for longterm prediction in mean absolute percentage error,respectively. 展开更多
关键词 load forecasting machine learning LSTM empirical mode decomposition XGBoost logistic regression(LR)
下载PDF
一种时频尺度下的多元短期电力负荷组合预测方法 被引量:1
3
作者 李楠 姜涛 +1 位作者 隋想 胡禹先 《电力系统保护与控制》 EI CSCD 北大核心 2024年第13期47-58,共12页
随机因素的增加导致电力负荷数据成分日渐复杂,使短期负荷预测的难度逐渐增大。针对该问题,提出一种时频尺度下的时间卷积网络与多元线性回归相融合的组合预测模型。利用自适应噪声完备集合经验模态分解(complete ensemble empirical mo... 随机因素的增加导致电力负荷数据成分日渐复杂,使短期负荷预测的难度逐渐增大。针对该问题,提出一种时频尺度下的时间卷积网络与多元线性回归相融合的组合预测模型。利用自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)在时频域上将负荷数据分解为若干个频率特征不同的本征模态分量,在模糊熵准则下聚类为随机项和趋势项。采用皮尔逊系数从诸多影响因素中筛选出与电力负荷高度相关的特征,鉴于小时间尺度分析更易于挖掘局部细节特征,分别构建了随机项与趋势项的细颗粒度特征集。利用具有强非线性处理能力的时间卷积网络(temporal convolutional network,TCN)去预测随机项,利用结构简单及线性拟合效果好的多元线性回归(multiplelinearregression,MLR)去预测趋势项,将二者的预测结果进行叠加重构后获得最终预测值。在新加坡和比利时两组数据集上的实验结果证明:所提模型具有较高的预测精度、较好的泛化性能及鲁棒性。 展开更多
关键词 短期电力负荷预测 时频尺度 分解算法 模糊熵 模型融合
下载PDF
基于多维气象信息时空融合和MPA-VMD的短期电力负荷组合预测模型 被引量:1
4
作者 王凌云 周翔 +2 位作者 田恬 杨波 李世春 《电力自动化设备》 EI CSCD 北大核心 2024年第2期190-197,共8页
为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分... 为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分析并实现时空融合。在时间维度上,采用海洋捕食者算法(MPA)实现变分模态分解(VMD)核心参数的自动寻优,并采用加权排列熵构造MPA-VMD适应度函数,实现负荷序列的自适应分解。通过将时间维度各分量与空间维度各气象信息进行融合构造长短期记忆(LSTM)网络模型与海洋捕食者算法-最小二乘支持向量机(MPA-LSSVM)模型的输入集,得到各分量预测结果,根据评价指标选择各分量对应的预测模型,重构得到整体预测结果。算例分析结果表明,所提预测模型优于传统预测模型,有效提高了电力负荷预测精度。 展开更多
关键词 短期电力负荷预测 海洋捕食者算法 时空融合 COPULA理论 变分模态分解
下载PDF
基于二次分解双向门控单元新型电力系统超短期负荷预测 被引量:2
5
作者 王德文 安涵 《电力科学与工程》 2024年第3期1-9,共9页
在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对... 在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对电力负荷历史序列进行初步分解,使负荷序列更加平稳。随后,对初步分解得到的强非平稳分量运用连续变分模态分解进行二次分解,降低其预测难度。最后,为充分学习电力负荷的时序特征,在预测过程构建基于双向门控循环单元的超短期电力负荷预测模型。实验结果表明,该模型相较于现有优秀预测模型有更高的预测精度。 展开更多
关键词 新型电力系统 超短期负荷 负荷预测 二次分解 双向门控循环单元
下载PDF
基于多尺度分量特征学习的用户级超短期负荷预测
6
作者 臧海祥 陈玉伟 +4 位作者 程礼临 朱克东 张越 孙国强 卫志农 《电网技术》 EI CSCD 北大核心 2024年第6期2584-2592,I0093-I0098,共15页
针对用户级负荷波动性强,一步分解后数据维度增加导致运行效率降低以及精度提升有限等问题,该文提出一种新的多尺度分量特征学习框架,用于用户级超短期负荷预测。构建基于自适应噪声的完整经验模态分解(complete ensemble empirical mod... 针对用户级负荷波动性强,一步分解后数据维度增加导致运行效率降低以及精度提升有限等问题,该文提出一种新的多尺度分量特征学习框架,用于用户级超短期负荷预测。构建基于自适应噪声的完整经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)以及变分模态分解(variational mode decomposition,VMD)的自适应二次模态分解框架,捕捉周期性等时序特征,并降低其非平稳特性;采用多维特征融合的方式挖掘各本征模态函数之间的耦合关系,丰富特征信息;利用改进的多尺度空间注意力(multiscale spatial attention,MSA)模块沿时间、空间以及通道等多尺度提取时空特征及多分量间耦合关系,进而便于卷积神经网络(convolutional neural network,CNN)学习多分量特征。基于江苏省南京市房地产业、教育业以及商务服务业共12位用户的实际负荷数据进行算例分析,各行业平均绝对百分误差分别为5.82%、4.54%以及8.78%,与效果最好的对照模型相比,分别降低了10.46%、6%以及7.48%,验证了该文模型具有较高的预测精度和良好的泛化性能。 展开更多
关键词 负荷预测 卷积神经网络 自适应二次模态分解 多尺度空间注意力机制
下载PDF
基于改进金豺算法的短期负荷预测 被引量:2
7
作者 谢国民 王润良 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期65-74,共10页
针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用... 针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用改进金豺算法对双向长短期记忆网络的参数进行优化,并对每个子序列建立预测模型;最后,组合各模型结果得到最终预测值。实验结果表明,本文模型预测精度更高,与真实值拟合度更好。 展开更多
关键词 变分模态分解 改进金豺算法 双向长短期记忆 组合模型 短期负荷预测
下载PDF
偏差电量考核机制下聚合温控负荷群控制策略
8
作者 李滨 于广文 白晓清 《电力自动化设备》 EI CSCD 北大核心 2024年第6期202-209,共8页
为降低售电公司在电力交易中的偏差考核电量和惩罚成本,以在用户负荷中占比较高的温控负荷为控制对象,建立配电网监测控制系统,收集电力市场和居民负荷数据,再根据这些数据设计基于聚合温控负荷群双层优化调度模型的直接负荷控制策略。... 为降低售电公司在电力交易中的偏差考核电量和惩罚成本,以在用户负荷中占比较高的温控负荷为控制对象,建立配电网监测控制系统,收集电力市场和居民负荷数据,再根据这些数据设计基于聚合温控负荷群双层优化调度模型的直接负荷控制策略。仿真结果表明,该策略能降低配电网功率不平衡性,有效增加温控负荷的可调度容量,减少温控负荷的调度次数,降低售电公司的偏差考核电量,提高售电公司利润。 展开更多
关键词 偏差电量考核 温控负荷 售电公司 直接负荷控制 变分模态分解
下载PDF
基于Spearman相关性阈值寻优和VMD-LSTM的用户级综合能源系统超短期负荷预测
9
作者 李鹏 罗湘淳 +2 位作者 孟庆伟 朱明晓 陈继明 《全球能源互联网》 CSCD 北大核心 2024年第4期406-420,共15页
由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难。为此,提出一种基于Spearman相关性分析阈值寻优(threshold optimizati... 由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难。为此,提出一种基于Spearman相关性分析阈值寻优(threshold optimization,TO)和变分模态分解结合长短期记忆网络(variational mode decomposition based long short-term memory network,VMD-LSTM)的多元负荷预测方法。首先,使用斯皮尔曼等级(Spearman rank,SR)相关系数定量计算多元负荷间以及负荷与其他气候因素间的相关关系并通过循环寻优确定最优相关阈值,然后采用VMD算法将以最优阈值筛选出的负荷特征序列分解成更简单、平稳、有规律性的本征模态函数(intrinsic mode function,IMF)后与最优气象特征一起输入LSTM模型进行负荷预测。通过某用户级IES的实际数据对所提方法的有效性进行了验证,结果表明,所提方法能有效提高IES的多元负荷预测精度。 展开更多
关键词 负荷预测 综合能源系统 相关性分析 阈值寻优 变分模态分解
下载PDF
基于双通道生成对抗网络的城市用电负荷缺失数据补全方法
10
作者 刘志坚 陶韵旭 +2 位作者 刘航 罗灵琳 李明 《电力系统自动化》 EI CSCD 北大核心 2024年第17期161-170,共10页
用电负荷数据的完整性与有效性在负荷预测等应用中具有重要意义。传统的缺失数据补全方法缺乏对用电负荷和多种外部时空关联信息的挖掘,难以获得高精度的补全结果。文中提出了一种双通道生成对抗网络,对缺失的负荷数据进行补全。首先,... 用电负荷数据的完整性与有效性在负荷预测等应用中具有重要意义。传统的缺失数据补全方法缺乏对用电负荷和多种外部时空关联信息的挖掘,难以获得高精度的补全结果。文中提出了一种双通道生成对抗网络,对缺失的负荷数据进行补全。首先,根据负荷的周期性变化特征和时空关联性构建三阶负荷张量,并将影响负荷变化的多种外部因素构建为三阶辅助信息张量。然后,为满足两种张量的双输入需求,在生成对抗网络的输入层引入双通道机制,通过卷积与反卷积运算提取张量的特征;为提升网络对张量数据的训练效果和补全精度,将张量分解损失引入原始损失函数,并采用改进的混沌映射粒子群优化算法联合优化超参数和网络。最后,在真实负荷数据集上开展数据补全实验。结果表明,所提方法能够对随机缺失率不超过50%、连续缺失不超过3天的负荷数据进行准确补全。 展开更多
关键词 负荷数据缺失 负荷预测 三阶张量 生成对抗网络 分解损失 混沌映射粒子群优化算法 补全方法
下载PDF
基于APSO-SSD-SVD的特高压换流站OLTC振动信号降噪方法
11
作者 骆钊 张涛 +3 位作者 阮彦俊 石延辉 林铭良 张杨 《电力系统保护与控制》 EI CSCD 北大核心 2024年第21期13-23,共11页
随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇... 随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇异谱分解和奇异值分解的方法。首先,利用自适应粒子群优化(adaptive particle swarm optimization, APSO)算法对奇异谱分解算法中的模态参数进行优化,选取最优分解模态数。其次,基于最大峭度准则选取最佳奇异谱分量。然后,确定最佳重构阶数,通过奇异值分解重构信号,从而达到信号降噪的目的。将所提方法应用于仿真信号和实验信号,结果表明所提方法的信噪比达到23.302,均方根误差仅为0.004,并且波形相似参数高达0.998,优于其他降噪方法。所提方法能够更有效地实现对特高压换流站OLTC振动信号的降噪,为辅助运维人员诊断OLTC状态提供参考。 展开更多
关键词 有载分接开关 自适应粒子群优化算法 奇异谱分解 奇异值分解 精细复合多尺度散布熵 信号降噪
下载PDF
基于CEEMD-IDWT的受载煤岩微震电压去噪算法
12
作者 李鑫 刘志勇 +4 位作者 杨桢 李昊 周婧 卜婧然 王艺儒 《电子测量与仪器学报》 CSCD 北大核心 2024年第8期124-136,共13页
受载复合煤岩变形破裂过程中产生的微小震动信号包含煤岩内部结构破裂信息,传统设备采集的微震信号存在大量环境噪声而无法直接进行分析。为有效提取受载煤岩变形破裂过程微震信号的变化特征,采用互补集合经验模态分解算法(CEEMD)与改进... 受载复合煤岩变形破裂过程中产生的微小震动信号包含煤岩内部结构破裂信息,传统设备采集的微震信号存在大量环境噪声而无法直接进行分析。为有效提取受载煤岩变形破裂过程微震信号的变化特征,采用互补集合经验模态分解算法(CEEMD)与改进dmey小波(IDWT)算法相融合,提出一种新型CEEMD-IDWT联合去噪算法。该算法首先利用CEEMD算法对原始信号进行分解,然后对分解得到的IMF分量应用IDWT算法进行去噪处理,最终将处理过的分量进行重构得到去噪信号。利用仿真分析和单轴压缩实验对该算法的有效性进行验证,结果表明:CEEMD-IDWT联合算法在仿真分析中,相比传统算法信噪比最大提高204.5%,对于其他改进去噪算法信噪比最少提高11.8%,去噪能力具有明显优势;将该算法嵌入自研微震电压采集设备,在复合煤岩单轴压缩实验中得到的微震电压信号噪噪比仅为0.08975,实际去噪效果明显;经CEEMD-IDWT联合算法去噪之后的微震电压具有明显的变化特征,显著提升了信号去噪效果,有效避免了微震电压信号的失真,可以作为受载煤岩变形破裂微震电压信号去噪处理的理想算法,为煤岩动力灾害的准确预判提供了一种可靠且先进的技术参考。 展开更多
关键词 受载煤岩 微震电压 互补集合经验模态分解 改进dmey小波 去噪算法
下载PDF
基于双模态分解的发电站母线短期负荷预测
13
作者 刘昕明 吉建光 +1 位作者 李玮 石光磁 《电气工程学报》 CSCD 北大核心 2024年第1期124-132,共9页
母线负荷预测是电力系统运营和规划中至关重要的一项任务,针对电力负荷数据的非线性强以及影响因素多等问题,提出了一种基于双模态分解、深度学习和注意力机制的负荷预测模型。首先,对输入数据进行经验模态分解(Empirical mode decompos... 母线负荷预测是电力系统运营和规划中至关重要的一项任务,针对电力负荷数据的非线性强以及影响因素多等问题,提出了一种基于双模态分解、深度学习和注意力机制的负荷预测模型。首先,对输入数据进行经验模态分解(Empirical mode decomposition,EMD),通过K-means聚类分析对复杂度相似的分量进行集合得到三个组合分量。其次,使用变分模态分解(Variational mode decomposition, VMD)对组合分量再次进行分解得到不同分量,使用麻雀搜索算法(Sparrow search algorithm,SSA)对变分模态分解的参数进行优化。再次,将变分模态分解得到的分量与影响因素连接并输入长短期记忆网络(Long short-term memory network, LSTM),通过注意力机制挖掘数据内部的相关性,并使用SSA对LSTM网络的参数进行优化。最后,采用宁夏某电站一年的负荷数据进行验证,经过与不同模型的对比分析,所提模型有更高的预测精度。 展开更多
关键词 负荷预测 经验模态分解 麻雀搜索算法 变分模态分解 长短期记忆网络 注意力机制
下载PDF
基于双重分解和双向长短时记忆网络的中长期负荷预测模型
14
作者 王继东 于俊源 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3418-3426,I0121-I0126,共15页
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin... 针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。 展开更多
关键词 中长期负荷预测 二次分解 多尺度熵 奇异谱分析 双向长短时记忆网络 长序列处理
下载PDF
基于时序生成对抗网络的居民用户非侵入式负荷分解
15
作者 罗平 朱振宇 +3 位作者 樊星驰 孙博宇 张帆 吕强 《电力系统自动化》 EI CSCD 北大核心 2024年第2期71-81,共11页
现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。... 现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。利用降维网络对所有电器有功功率序列组成的高维向量进行降维以降低计算的复杂度,通过复原网络将结果还原为高维向量。基于电器运行状态和深度学习的非侵入式分解方法,运用卷积神经网络-双向门控循环单元构建状态复杂电器的负荷分解回归模型,对状态简单电器利用深度神经网络构建负荷识别分类模型。通过对比其他数据生成方法,以及改变典型公开数据集中生成数据比例所得的负荷分解结果验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷分解 对抗生成网络 降维网络 卷积神经网络-双向门控循环单元 深度神经网络
下载PDF
基于VMD和时空网络变分自编码器的负荷聚类
16
作者 陆绮荣 王泽鑫 +1 位作者 叶颖雅 邹健 《科学技术与工程》 北大核心 2024年第14期5831-5838,共8页
为了解决用户用电负荷曲线数据维度高、特征提取困难以及序列存在信号模态混叠的问题,提出了使用变分模态分解(variational modal decomposition,VMD)和改进基于时空网络的变分自编码器(variational auto-encoder,VAE)对电力负荷曲线进... 为了解决用户用电负荷曲线数据维度高、特征提取困难以及序列存在信号模态混叠的问题,提出了使用变分模态分解(variational modal decomposition,VMD)和改进基于时空网络的变分自编码器(variational auto-encoder,VAE)对电力负荷曲线进行特征提取。通过模态分解得到信号的固有模态,对模态重构得到时序特征较明显的序列信号。再通过长短期记忆网络(long short-term memory network,LSTM)和卷积网络(convolutional neural network,CNN)组成的时空变分自编码器进行潜在特征提取,并构建网络分类器来联合损失优化自编码器模型。最后使用Minibatchkmeans算法聚类并计算聚类中心。使用UCI数据集中葡萄牙居民用电量作为实验数据,通过实验结果表明经模态分解后通过降维再聚类的算法在戴维斯丁堡指数(Davies-Bouldin index,DBI)和轮廓系数(silhouette coefficient,SC)上表现出较好效果。 展开更多
关键词 负荷聚类 变分模态分解 长短期记忆网络 卷积神经网络 变分自编码器
下载PDF
基于经验模态分解和优化BiLSTM的短期负荷预测
17
作者 骆东松 魏義民 张杰锋 《机械与电子》 2024年第9期11-17,共7页
针对电力负荷数据的非线性和不稳定性问题,提出了一种基于经验模态分解改进麻雀搜索算法双向长短期记忆神经网络相结合的EMD ISSA BiLSTM预测模型。首先采用EMD处理非线性负荷数据,将原始负荷数据分解为多个不同尺度的本征模态函数(IMF)... 针对电力负荷数据的非线性和不稳定性问题,提出了一种基于经验模态分解改进麻雀搜索算法双向长短期记忆神经网络相结合的EMD ISSA BiLSTM预测模型。首先采用EMD处理非线性负荷数据,将原始负荷数据分解为多个不同尺度的本征模态函数(IMF),引入反向学习策略和Levy飞行策略分别改进麻雀搜索算法(SSA)的收敛速度慢和容易陷入局部最优问题,利用改进麻雀搜索算法(ISSA)对BiLSTM神经网络进行参数寻优。然后再利用优化后的BiLSTM模型对每个分量进行预测,并将各预测结果叠加组合,得到整个负荷序列的预测结果。最后通过实际算例分析,证明该方法相对于传统的预测方法具有更好的预测精度和稳定性,可作为一种有效的短期负荷预测方法。 展开更多
关键词 电力系统 负荷预测 经验模态分解 麻雀搜索算法 双向长短时记忆神经网络
下载PDF
基于CEEMDAN-SBiGRU-OMHA的短期电力负荷预测
18
作者 包广斌 刘晨 +2 位作者 张波 沈治名 罗曈 《计算机系统应用》 2024年第10期124-132,共9页
为了提高短期电力负荷预测的精准度,充分挖掘电力负荷数据的复杂相关性,提出了一种优化多头注意力机制的CEEMDAN-SBiGRU组合预测模型,改进了特征提取和特征融合两个模块.首先,采用自适应噪声完全集成经验模态分解(complete ensemble emp... 为了提高短期电力负荷预测的精准度,充分挖掘电力负荷数据的复杂相关性,提出了一种优化多头注意力机制的CEEMDAN-SBiGRU组合预测模型,改进了特征提取和特征融合两个模块.首先,采用自适应噪声完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将电力负荷数据分解成多个内在模态函数(IMF)和一个残差信号(RES);同时引入降噪自编码器DAE挖掘数据中受气象因素、工作日类型和温度变化的潜在特征.其次,将提取到的复杂特征输入至堆叠双向门控循环单元(stacked bidirectional gated recurrent unit,SBiGRU)模块中继续学习,以获取隐藏状态.最后,将获取的隐藏状态输入至加入残差机制和层归一化优化的多头注意力(optimized multi-head attention,OMHA)机制模块,可以准确地给重要特征分配更高的权重,解决噪声干扰问题.实验结果表明,CEEMDAN-SBiGRU-OMHA组合模型具有更高的精确性. 展开更多
关键词 短期电力负荷预测 自适应噪声完全集成经验模态分解(CEEMDAN) 堆叠双向门控循环单元(SBiGRU) 降噪自编码器 优化的多头注意力(OMHA)
下载PDF
基于时序分解和SARIMA⁃DSR的台区可开放容量计算方法 被引量:1
19
作者 冯隆基 楚成博 +4 位作者 方磊 钱勇 张法业 王宁 王金喜 《现代电子技术》 北大核心 2024年第2期127-132,共6页
合理地分析并准确计算台区可开放容量,能够优化配电系统的运行,提高线路利用率,保证台区配电变压器安全、经济、稳定运行。传统的可开放容量计算方法主要基于线路输电能力经验公式进行计算,未考虑高负荷运行台区的短时性及季节性,存在... 合理地分析并准确计算台区可开放容量,能够优化配电系统的运行,提高线路利用率,保证台区配电变压器安全、经济、稳定运行。传统的可开放容量计算方法主要基于线路输电能力经验公式进行计算,未考虑高负荷运行台区的短时性及季节性,存在计算准确率和普适性低的问题。因此,提出一种基于局部加权周期趋势分解算法(STL)和季节性自回归滑动平均模型(SARIMA)与动态同时率(DSR)的台区可开放容量计算方法。该方法首先利用STL将历史台区负荷数据分解为趋势项、季节项和余项;其次,根据调整的历史台区负荷数据建立SARIMA台区负荷预测模型,预测未来台区负荷的变化及负荷峰值;同时,根据台区历史负荷数据建立台区DSR准则;最后,构建SARIMA‐DSR模型,合理调整可开放容量计算方法中的配置系数,实现台区的可开放容量的准确计算。 展开更多
关键词 可开放容量 SARIMA 动态同时率 STL 时序分解 负荷预测
下载PDF
台风灾害下考虑多类型故障不确定性的源网荷协同弹性提升模型 被引量:1
20
作者 袁杨 张衡 +3 位作者 程浩忠 杨楠 王峥 牟善科 《电网技术》 EI CSCD 北大核心 2024年第6期2541-2549,I0079-I0083,共14页
针对现有弹性提升模型系统故障不确定性刻画不充分、源网荷弹性提升措施未协同的问题,提出了一种台风灾害下计及多类型故障不确定性的源网荷协同弹性提升模型。首先,构建了多类型故障概率分布不确定集,以刻画台风灾害下最严重、最可能... 针对现有弹性提升模型系统故障不确定性刻画不充分、源网荷弹性提升措施未协同的问题,提出了一种台风灾害下计及多类型故障不确定性的源网荷协同弹性提升模型。首先,构建了多类型故障概率分布不确定集,以刻画台风灾害下最严重、最可能、连锁故障3类典型故障的概率分布不确定性。接着,基于分布鲁棒优化思想,提出了长短期结合、源网荷协同的分布鲁棒弹性提升措施模型:针对台风灾害下最恶劣多类型故障概率分布场景,在灾前通过输电网扩展规划、快/慢机开机组合、输电网结构优化进行预防,灾中通过差异化切负荷和发电机调度进行抵御和响应。结合模型数学结构特征,基于Benders分解和列与约束生成思想,设计原始-对偶并行分解算法完成模型求解。最后,以IEEE-30节点和中国某区域261节点系统为例,研究了源网荷协同措施的弹性提升效果,验证了所提方法的有效性。 展开更多
关键词 台风灾害 弹性 故障概率分布 不确定性 源网荷协同 分解算法
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部