Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at...Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry.展开更多
Complex-valued neural networks(CVNNs)have shown their excellent efficiency compared to their real counterparts in speech enhancement,image and signal processing.Researchers throughout the years have made many efforts ...Complex-valued neural networks(CVNNs)have shown their excellent efficiency compared to their real counterparts in speech enhancement,image and signal processing.Researchers throughout the years have made many efforts to improve the learning algorithms and activation functions of CVNNs.Since CVNNs have proven to have better performance in handling the naturally complex-valued data and signals,this area of study will grow and expect the arrival of some effective improvements in the future.Therefore,there exists an obvious reason to provide a comprehensive survey paper that systematically collects and categorizes the advancement of CVNNs.In this paper,we discuss and summarize the recent advances based on their learning algorithms,activation functions,which is the most challenging part of building a CVNN,and applications.Besides,we outline the structure and applications of complex-valued convolutional,residual and recurrent neural networks.Finally,we also present some challenges and future research directions to facilitate the exploration of the ability of CVNNs.展开更多
In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. S...In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. Stability criteria dependent on external inputs of neural networks are derived. The designed networks can retrieve the stored patterns by external inputs rather than initial conditions. The derivation can memorize the desired patterns with lower-dimensional neural networks than real-valued neural networks, and eliminate spurious equilibria of complex-valued neural networks. One numerical example is provided to show the effectiveness and superiority of the presented results.展开更多
In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition,...In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results.展开更多
Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valu...Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions.展开更多
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th...This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.展开更多
As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a succes...As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a successful tool in the area of identification and control of time invariant nonlinear systems.However,it is still difficult to apply them to complicated time varying system identification.In this paper we present a learning algorithm for identification of the nonlinear time varying system using feedforward neural networks.The main idea of this approach is that we regard the weights of the network as a state of a time varying system,then use a Kalman filter to estimate the state.Thus the network implements nonlinear and time varying mapping.We derived both the global and local learning algorithms.Simulation results demonstrate the effectiveness of this approach.展开更多
In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of...In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of massive MIMO in 5G,the number of antennas increases by hundreds or even thousands times,which leads to excessive feedback overhead and poses a huge challenge to the conventional channel state information feedback scheme.In this paper,by using deep learning technology,we develop a system framework for CSI feedback based on fully connected feedforward neural networks(FCFNN),named CF-FCFNN.Through learning the training set composed of CSI,CF-FCFNN is able to recover the original CSI from the compressed CSI more accurately compared with the existing method based on deep learning without increasing the algorithm complexity.展开更多
Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, a...Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, assuming that the training examples are input in a stochastic way. The monotonicity of the error function in the iteration and the boundedness of the weight are both guaranteed. We also present a numerical experiment to support our results.展开更多
This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural ...This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural network are investigated.Meanwhile,based on the complex-valued inequalities of fractional-order derivatives and the stability theory of fractional-order complex-valued systems,a new adaptive controller and new complex-valued update laws are proposed to construct a synchronization control model for fractional-order complex-valued chaotic neural networks.Finally,the numerical simulation results are presented to illustrate the effectiveness of the developed synchronization scheme.展开更多
As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. A...As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.展开更多
In this paper, the singularity and its effect on learning dynamics in the complex-valued neural network are elucidated. It has learned that the linear combination structure in the updating rule of the complex-valued n...In this paper, the singularity and its effect on learning dynamics in the complex-valued neural network are elucidated. It has learned that the linear combination structure in the updating rule of the complex-valued neural network increases the speed of moving away from the singular points, and the complex-valued neural network cannot be easily influenced by the singular points, whereas the learning of the usual real-valued neural network can be attracted in the neighborhood of singular points, which causes a standstill in learning. Simulation results on the learning dynamics of the three-layered real-valued and complex-valued neural networks in the neighborhood of singularities support the analytical results.展开更多
The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To a...The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.展开更多
Background:To promote the quality evaluation,clarify the processing mechanism and distinguish origins of Corni Fructus(cornus)from different regions.Methods:This study developed a high performance liquid chromatograph...Background:To promote the quality evaluation,clarify the processing mechanism and distinguish origins of Corni Fructus(cornus)from different regions.Methods:This study developed a high performance liquid chromatography method for simultaneous determination of 5-hydroxymethylfurfural,2 phenolic acids and 4 iridoid glycosides and the reference fingerprint of cornus from different regions.In addition,the feedforward neural network model provided a pattern classification of sample regions.Results:The content of morroniside and loganin were the highest in all raw cornus samples ranging from 9.45μg/mg to 16.3μg/mg and 6.64μg/mg to 13.7μg/mg,respectively.The level of sweroside in raw cornus from Henan(0.83μg/mg^(-1).39μg/mg)and Zhejiang(0.64μg/mg^(-1).17μg/mg)were greater than other origins.After wine-processing,the glucose or fructose were dehydrated to increase the levels of 5-hydroxymethylfurfural.The C-4 position of-COOCH3 of hot-sensitive iridoid glycosides was hydrolyzed to generate-COOH as stable components.Polyphenol derivatives may be degraded to increase the content of phenolic acid.Subsequently,an excellent feedforward neural network model for identification of raw cornus and wine-prepared cornus was established which could distinguish the sample origins.Conclusion:This work provided a trustworthy method to evaluate the quality and distinguish the sources of cornus.Meanwhile,the clear processing mechanism provided a scientific foundation for controlling the cornus quality during wine-processing.展开更多
Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such a...Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such as long propagation delay and irregular Doppler shifts.The development of machine and deep learning algorithms has reduced the burden of achieving reli-able and good communication schemes in the underwater acoustic environment.This paper proposes a novel intelligent selection method between the different modulation schemes such as Code Division Multiple Access(CDMA),Time Divi-sion Multiple Access(TDMA),and Orthogonal Frequency Division Multiplexing(OFDM)techniques using the hybrid combination of the convolutional neural net-works(CNN)and ensemble single feedforward layers(SFL).The convolutional neural networks are used for channel feature extraction,and boosted ensembled feedforward layers are used for modulation selection based on the CNN outputs.The extensive experimentation is carried out and compared with other hybrid learning models and conventional methods.Simulation results demonstrate that the performance of the proposed hybrid learning model has achieved nearly 98%accuracy and a 30%increase in BER performance which outperformed the other learning models in achieving the communication schemes under dynamic underwater environments.展开更多
Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the impl...Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the implementation of the network by electronic circuits. In this paper we introduce a punishing term into the error function of the training procedure to prevent this situation. The corresponding convergence of the iterative training procedure and the boundedness of the weight sequence are proved. A supporting numerical example is also provided.展开更多
A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation func...A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation functions in wavelet network by different activation functions in feedforward neural network. It is concluded that some wavelet function is equal to the linear combination of several neurons in feedforward neural network.展开更多
The objective of this research is to introduce the use of different types of neural networks in human hand gesture recognition for static images as well as for dynamic gestures. This work focuses on the ability of neu...The objective of this research is to introduce the use of different types of neural networks in human hand gesture recognition for static images as well as for dynamic gestures. This work focuses on the ability of neural networks to assist in Arabic Sign Language (ArSL) hand gesture recognition. We have presented the use of feedforward neural networks and recurrent neural networks along with its different architectures;partially and fully recurrent networks. Then we have tested our proposed system;the results of the experiment have showed that the suggested system with the fully recurrent architecture has had a performance with an accuracy rate 95% for static gesture recognition.展开更多
基金the National Natural Science Foundation of China under Grant(42274119)the Liaoning Revitalization Talents Program under Grant(XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry.
基金partially supported by the JSPS KAKENHI(JP22H03643,JP19K22891)。
文摘Complex-valued neural networks(CVNNs)have shown their excellent efficiency compared to their real counterparts in speech enhancement,image and signal processing.Researchers throughout the years have made many efforts to improve the learning algorithms and activation functions of CVNNs.Since CVNNs have proven to have better performance in handling the naturally complex-valued data and signals,this area of study will grow and expect the arrival of some effective improvements in the future.Therefore,there exists an obvious reason to provide a comprehensive survey paper that systematically collects and categorizes the advancement of CVNNs.In this paper,we discuss and summarize the recent advances based on their learning algorithms,activation functions,which is the most challenging part of building a CVNN,and applications.Besides,we outline the structure and applications of complex-valued convolutional,residual and recurrent neural networks.Finally,we also present some challenges and future research directions to facilitate the exploration of the ability of CVNNs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61503338,61573316,61374152,and 11302195)the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ15F030005)
文摘In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. Stability criteria dependent on external inputs of neural networks are derived. The designed networks can retrieve the stored patterns by external inputs rather than initial conditions. The derivation can memorize the desired patterns with lower-dimensional neural networks than real-valued neural networks, and eliminate spurious equilibria of complex-valued neural networks. One numerical example is provided to show the effectiveness and superiority of the presented results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61374094 and 61503338)the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ15F030005)
文摘In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62176189 and 62106181)the Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) (Grant No. Y202002)。
文摘Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions.
文摘This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.
基金National Natural Science Foundation of China!(No.6 97740 33)
文摘As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a successful tool in the area of identification and control of time invariant nonlinear systems.However,it is still difficult to apply them to complicated time varying system identification.In this paper we present a learning algorithm for identification of the nonlinear time varying system using feedforward neural networks.The main idea of this approach is that we regard the weights of the network as a state of a time varying system,then use a Kalman filter to estimate the state.Thus the network implements nonlinear and time varying mapping.We derived both the global and local learning algorithms.Simulation results demonstrate the effectiveness of this approach.
基金This work was supported by the Key Research and Development Project of Shaanxi Province under Grant no.2019ZDLGY07-07.
文摘In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of massive MIMO in 5G,the number of antennas increases by hundreds or even thousands times,which leads to excessive feedback overhead and poses a huge challenge to the conventional channel state information feedback scheme.In this paper,by using deep learning technology,we develop a system framework for CSI feedback based on fully connected feedforward neural networks(FCFNN),named CF-FCFNN.Through learning the training set composed of CSI,CF-FCFNN is able to recover the original CSI from the compressed CSI more accurately compared with the existing method based on deep learning without increasing the algorithm complexity.
基金Partly supported by the National Natural Science Foundation of China,and the Basic Research Program of the Committee of ScienceTechnology and Industry of National Defense of China.
文摘Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, assuming that the training examples are input in a stochastic way. The monotonicity of the error function in the iteration and the boundedness of the weight are both guaranteed. We also present a numerical experiment to support our results.
基金Project supported by the Science and Technology Support Program of Xingtai,China(Grant No.2019ZC054)。
文摘This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural network are investigated.Meanwhile,based on the complex-valued inequalities of fractional-order derivatives and the stability theory of fractional-order complex-valued systems,a new adaptive controller and new complex-valued update laws are proposed to construct a synchronization control model for fractional-order complex-valued chaotic neural networks.Finally,the numerical simulation results are presented to illustrate the effectiveness of the developed synchronization scheme.
文摘As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.
文摘In this paper, the singularity and its effect on learning dynamics in the complex-valued neural network are elucidated. It has learned that the linear combination structure in the updating rule of the complex-valued neural network increases the speed of moving away from the singular points, and the complex-valued neural network cannot be easily influenced by the singular points, whereas the learning of the usual real-valued neural network can be attracted in the neighborhood of singular points, which causes a standstill in learning. Simulation results on the learning dynamics of the three-layered real-valued and complex-valued neural networks in the neighborhood of singularities support the analytical results.
基金This work was funded by the Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07201003)the National Natural Science Foundation of China(51961125101)the Science and Technology Project of Zhejiang Province(2018C03003).
文摘The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.
基金supported by the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine.(No.ZYYCXTD-D-202005)the Key Project at Central Government Level(No.2060302)+1 种基金the National Natural Science Foundation of China Grants(No.81872956)Tianjin Science and Technology Planning Project(No.19YFZCSY00170).
文摘Background:To promote the quality evaluation,clarify the processing mechanism and distinguish origins of Corni Fructus(cornus)from different regions.Methods:This study developed a high performance liquid chromatography method for simultaneous determination of 5-hydroxymethylfurfural,2 phenolic acids and 4 iridoid glycosides and the reference fingerprint of cornus from different regions.In addition,the feedforward neural network model provided a pattern classification of sample regions.Results:The content of morroniside and loganin were the highest in all raw cornus samples ranging from 9.45μg/mg to 16.3μg/mg and 6.64μg/mg to 13.7μg/mg,respectively.The level of sweroside in raw cornus from Henan(0.83μg/mg^(-1).39μg/mg)and Zhejiang(0.64μg/mg^(-1).17μg/mg)were greater than other origins.After wine-processing,the glucose or fructose were dehydrated to increase the levels of 5-hydroxymethylfurfural.The C-4 position of-COOCH3 of hot-sensitive iridoid glycosides was hydrolyzed to generate-COOH as stable components.Polyphenol derivatives may be degraded to increase the content of phenolic acid.Subsequently,an excellent feedforward neural network model for identification of raw cornus and wine-prepared cornus was established which could distinguish the sample origins.Conclusion:This work provided a trustworthy method to evaluate the quality and distinguish the sources of cornus.Meanwhile,the clear processing mechanism provided a scientific foundation for controlling the cornus quality during wine-processing.
文摘Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such as long propagation delay and irregular Doppler shifts.The development of machine and deep learning algorithms has reduced the burden of achieving reli-able and good communication schemes in the underwater acoustic environment.This paper proposes a novel intelligent selection method between the different modulation schemes such as Code Division Multiple Access(CDMA),Time Divi-sion Multiple Access(TDMA),and Orthogonal Frequency Division Multiplexing(OFDM)techniques using the hybrid combination of the convolutional neural net-works(CNN)and ensemble single feedforward layers(SFL).The convolutional neural networks are used for channel feature extraction,and boosted ensembled feedforward layers are used for modulation selection based on the CNN outputs.The extensive experimentation is carried out and compared with other hybrid learning models and conventional methods.Simulation results demonstrate that the performance of the proposed hybrid learning model has achieved nearly 98%accuracy and a 30%increase in BER performance which outperformed the other learning models in achieving the communication schemes under dynamic underwater environments.
文摘Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the implementation of the network by electronic circuits. In this paper we introduce a punishing term into the error function of the training procedure to prevent this situation. The corresponding convergence of the iterative training procedure and the boundedness of the weight sequence are proved. A supporting numerical example is also provided.
基金Supported by the National Natural Science Foundatipn of China (No. 59977019).
文摘A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation functions in wavelet network by different activation functions in feedforward neural network. It is concluded that some wavelet function is equal to the linear combination of several neurons in feedforward neural network.
文摘The objective of this research is to introduce the use of different types of neural networks in human hand gesture recognition for static images as well as for dynamic gestures. This work focuses on the ability of neural networks to assist in Arabic Sign Language (ArSL) hand gesture recognition. We have presented the use of feedforward neural networks and recurrent neural networks along with its different architectures;partially and fully recurrent networks. Then we have tested our proposed system;the results of the experiment have showed that the suggested system with the fully recurrent architecture has had a performance with an accuracy rate 95% for static gesture recognition.