In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of...In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of massive MIMO in 5G,the number of antennas increases by hundreds or even thousands times,which leads to excessive feedback overhead and poses a huge challenge to the conventional channel state information feedback scheme.In this paper,by using deep learning technology,we develop a system framework for CSI feedback based on fully connected feedforward neural networks(FCFNN),named CF-FCFNN.Through learning the training set composed of CSI,CF-FCFNN is able to recover the original CSI from the compressed CSI more accurately compared with the existing method based on deep learning without increasing the algorithm complexity.展开更多
With vast amounts of data being generated daily and the ever increasing interconnectivity of the world’s internet infrastructures,a machine learning based Intrusion Detection Systems(IDS)has become a vital component ...With vast amounts of data being generated daily and the ever increasing interconnectivity of the world’s internet infrastructures,a machine learning based Intrusion Detection Systems(IDS)has become a vital component to protect our economic and national security.Previous shallow learning and deep learning strategies adopt the single learning model approach for intrusion detection.The single learning model approach may experience problems to understand increasingly complicated data distribution of intrusion patterns.Particularly,the single deep learning model may not be effective to capture unique patterns from intrusive attacks having a small number of samples.In order to further enhance the performance of machine learning based IDS,we propose the Big Data based Hierarchical Deep Learning System(BDHDLS).BDHDLS utilizes behavioral features and content features to understand both network traffic characteristics and information stored in the payload.Each deep learning model in the BDHDLS concentrates its efforts to learn the unique data distribution in one cluster.This strategy can increase the detection rate of intrusive attacks as compared to the previous single learning model approaches.Based on parallel training strategy and big data techniques,the model construction time of BDHDLS is reduced substantially when multiple machines are deployed.展开更多
基金This work was supported by the Key Research and Development Project of Shaanxi Province under Grant no.2019ZDLGY07-07.
文摘In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of massive MIMO in 5G,the number of antennas increases by hundreds or even thousands times,which leads to excessive feedback overhead and poses a huge challenge to the conventional channel state information feedback scheme.In this paper,by using deep learning technology,we develop a system framework for CSI feedback based on fully connected feedforward neural networks(FCFNN),named CF-FCFNN.Through learning the training set composed of CSI,CF-FCFNN is able to recover the original CSI from the compressed CSI more accurately compared with the existing method based on deep learning without increasing the algorithm complexity.
基金partially supported by Research Initiative for Summer Engagement(RISE)from the Office of the Vice President for Research at University of South Carolina
文摘With vast amounts of data being generated daily and the ever increasing interconnectivity of the world’s internet infrastructures,a machine learning based Intrusion Detection Systems(IDS)has become a vital component to protect our economic and national security.Previous shallow learning and deep learning strategies adopt the single learning model approach for intrusion detection.The single learning model approach may experience problems to understand increasingly complicated data distribution of intrusion patterns.Particularly,the single deep learning model may not be effective to capture unique patterns from intrusive attacks having a small number of samples.In order to further enhance the performance of machine learning based IDS,we propose the Big Data based Hierarchical Deep Learning System(BDHDLS).BDHDLS utilizes behavioral features and content features to understand both network traffic characteristics and information stored in the payload.Each deep learning model in the BDHDLS concentrates its efforts to learn the unique data distribution in one cluster.This strategy can increase the detection rate of intrusive attacks as compared to the previous single learning model approaches.Based on parallel training strategy and big data techniques,the model construction time of BDHDLS is reduced substantially when multiple machines are deployed.