Ecological studies on macrozoobenthos were conducted in two small plateau lakes in the Yunnan-Guizhou Plateau, Southwest China: Xingyun Lake (XL), a eutrophic lake whose main source of primary production was phytop...Ecological studies on macrozoobenthos were conducted in two small plateau lakes in the Yunnan-Guizhou Plateau, Southwest China: Xingyun Lake (XL), a eutrophic lake whose main source of primary production was phytoplankton (Chl α=99.76±24.01 μg/L), and Yangzong Lake (YL), a mesotrophic lake. Sampling was carried out from October 2002 to May 2004. Altogether 23 benthic taxa were identified in XL and 21 taxa in YL. The density of benthos in XL was much lower than that in YL, but the biomass was about equal in the two lakes, being I 423 ind/m^2 and 8.71 g/m^2 in XL and 4 249 ind/m^2 and 8.60 g/m^2 in YL. The dominant species were Limnodrilus hoffmeisteri, Branchiura sowerbyi, Aulodrilus pluriseta and Chironomus sp. in XL and Limnodrilus hoffrneisteri, Aulodrilus pluriseta and Bellamya sp. in YL. Seasonal fluctuation occurred, showing richer species in summer and winter, but the density and biomass varied in different ways in the two lakes. Analyses on functional feeding groups indicate that collector-gatherers were predominant, but the relative abundances of other groups were different. Stepwise multiple regression analysis demonstrated that the water depth, conductivity and chlorophyll a were the key factors affecting macrozoobenthic abundance in the lakes.展开更多
Using multi-mesh gillnets and trawls, the fish communities in Dianshan Lake at 6 stations from Oct. 2009 to Jul. 2010 were investigated seasonally to reveal the biodiversity and its spatial and temporal distribution p...Using multi-mesh gillnets and trawls, the fish communities in Dianshan Lake at 6 stations from Oct. 2009 to Jul. 2010 were investigated seasonally to reveal the biodiversity and its spatial and temporal distribution patterns. The long-term changes in their structural characteristics were then analyzed to identify the main infl uencing factors and several measures for lake restoration were put forward. Thirty six species, belonging to 9 family and 30 genera, were collected, amongst which, the order Cypriniformes accounted for 61.1% of the total species number. In terms of importance value, Cypriniformes was the predominant group, Coilia nasus the dominant species, while Cyprinus carpio and Rhinogobius giurinus were the subdominant taxa. The community types did not differ among stations, but between seasons. There were no significant differences between seasons and among stations in species diversity, but richness differed both spatially and seasonally. Along with the process of eutrophication and the drastic reduction of the area colonized by macrophytes from 1959 to 2009–2010, the fish diversity declined markedly, and species numbers of herbivores and piscivores declined proportionately more than those of invertivores, omnivores, and planktivores. The decline of potamophilus and river-lake migratory fish was more marked than those of sedentary, river-sea migratory, and estuarine fishes. Eutrophication concomitant with sharp reduction of macrophyte area and overfishing may be the main reasons for the decline in fish diversity in Dianshan Lake.展开更多
This study presents findings of the first systematic analysis of aquatic biotic assemblages in the source region of the Yellow and Yangtze Rivers. It provides an initial basis with which to select representative organ...This study presents findings of the first systematic analysis of aquatic biotic assemblages in the source region of the Yellow and Yangtze Rivers. It provides an initial basis with which to select representative organisms as indicators to assess the aquatic ecological status of rivers in this region. Macroinvertebrates are considered to be good indicators of long-term environmental changes due to their restricted range and persistence over time. Field investigations of macroinvertebrates were conducted in August 2009 in the source region of the Yellow River, and in July 2010 in the source region of the Yangtze River. Altogether 68 taxa of macroinvertebrates belonging to 29 families and 59 genera were identified. Among them were 8 annelids, 5 mollusks, 54 arthropods and 1 other animal. In the source region of the Yellow River, taxa number, density and biomass of macroinvertebrates were 50, 329 individuals m2 and 0.3966 g dry weight m2, respectively. Equivalent figures for the source region of the Yangtze River were 29, 59 individuals m2 and 0.0307 g dry weight m-2. The lower benthic animal resources in the source region of the Yangtze River are ascribed to higher altitude, higher sediment concentration and wetland degradation. Preliminary findings of this exploratory study indicate that hydroelectric power stations had a weak impact on benthic dwellers but wetland degradation caused by a series of human activities had a catastrophic impact on survival of macroinvertebrates. Ecological protection measures such as conservative grazing and vegetation management are required to minimize grassland degradation and desertification, and reduce soil erosion rate and river sediment discharge.展开更多
基金Supportted by a Key Project grant,CAS (KSCX1-SW-13-04)the National Natural Science Foundation of China (No.30470205)
文摘Ecological studies on macrozoobenthos were conducted in two small plateau lakes in the Yunnan-Guizhou Plateau, Southwest China: Xingyun Lake (XL), a eutrophic lake whose main source of primary production was phytoplankton (Chl α=99.76±24.01 μg/L), and Yangzong Lake (YL), a mesotrophic lake. Sampling was carried out from October 2002 to May 2004. Altogether 23 benthic taxa were identified in XL and 21 taxa in YL. The density of benthos in XL was much lower than that in YL, but the biomass was about equal in the two lakes, being I 423 ind/m^2 and 8.71 g/m^2 in XL and 4 249 ind/m^2 and 8.60 g/m^2 in YL. The dominant species were Limnodrilus hoffmeisteri, Branchiura sowerbyi, Aulodrilus pluriseta and Chironomus sp. in XL and Limnodrilus hoffrneisteri, Aulodrilus pluriseta and Bellamya sp. in YL. Seasonal fluctuation occurred, showing richer species in summer and winter, but the density and biomass varied in different ways in the two lakes. Analyses on functional feeding groups indicate that collector-gatherers were predominant, but the relative abundances of other groups were different. Stepwise multiple regression analysis demonstrated that the water depth, conductivity and chlorophyll a were the key factors affecting macrozoobenthic abundance in the lakes.
基金Supported by the Science and Technology Commission of Shanghai Municipality(Nos.08DZ1203101,08DZ1203102)the Shanghai University Knowledge Service Platform,Shanghai Ocean University Aquatic Animal Breeding Center(No.ZF1206)the Open Project of Key Laboratory of Freshwater Biodiversity Conservation and Utilization,Certificated by Ministry of Agriculture of China
文摘Using multi-mesh gillnets and trawls, the fish communities in Dianshan Lake at 6 stations from Oct. 2009 to Jul. 2010 were investigated seasonally to reveal the biodiversity and its spatial and temporal distribution patterns. The long-term changes in their structural characteristics were then analyzed to identify the main infl uencing factors and several measures for lake restoration were put forward. Thirty six species, belonging to 9 family and 30 genera, were collected, amongst which, the order Cypriniformes accounted for 61.1% of the total species number. In terms of importance value, Cypriniformes was the predominant group, Coilia nasus the dominant species, while Cyprinus carpio and Rhinogobius giurinus were the subdominant taxa. The community types did not differ among stations, but between seasons. There were no significant differences between seasons and among stations in species diversity, but richness differed both spatially and seasonally. Along with the process of eutrophication and the drastic reduction of the area colonized by macrophytes from 1959 to 2009–2010, the fish diversity declined markedly, and species numbers of herbivores and piscivores declined proportionately more than those of invertivores, omnivores, and planktivores. The decline of potamophilus and river-lake migratory fish was more marked than those of sedentary, river-sea migratory, and estuarine fishes. Eutrophication concomitant with sharp reduction of macrophyte area and overfishing may be the main reasons for the decline in fish diversity in Dianshan Lake.
基金National Natural Science Foundation of China, No.51209010 No.41001008+2 种基金 International Science & Technology Cooperation Program of China, No.2011DFA20820 2011DFG93160 Fund from Tsinghua University, No.20121080027
文摘This study presents findings of the first systematic analysis of aquatic biotic assemblages in the source region of the Yellow and Yangtze Rivers. It provides an initial basis with which to select representative organisms as indicators to assess the aquatic ecological status of rivers in this region. Macroinvertebrates are considered to be good indicators of long-term environmental changes due to their restricted range and persistence over time. Field investigations of macroinvertebrates were conducted in August 2009 in the source region of the Yellow River, and in July 2010 in the source region of the Yangtze River. Altogether 68 taxa of macroinvertebrates belonging to 29 families and 59 genera were identified. Among them were 8 annelids, 5 mollusks, 54 arthropods and 1 other animal. In the source region of the Yellow River, taxa number, density and biomass of macroinvertebrates were 50, 329 individuals m2 and 0.3966 g dry weight m2, respectively. Equivalent figures for the source region of the Yangtze River were 29, 59 individuals m2 and 0.0307 g dry weight m-2. The lower benthic animal resources in the source region of the Yangtze River are ascribed to higher altitude, higher sediment concentration and wetland degradation. Preliminary findings of this exploratory study indicate that hydroelectric power stations had a weak impact on benthic dwellers but wetland degradation caused by a series of human activities had a catastrophic impact on survival of macroinvertebrates. Ecological protection measures such as conservative grazing and vegetation management are required to minimize grassland degradation and desertification, and reduce soil erosion rate and river sediment discharge.