MXene,a transition metal carbide/nitride,has been prominent as an ideal electrochemical active material for supercapacitors.However,the low MXene load limits its practical applications.As environmental concerns and su...MXene,a transition metal carbide/nitride,has been prominent as an ideal electrochemical active material for supercapacitors.However,the low MXene load limits its practical applications.As environmental concerns and sustainable development become more widely recognized,it is necessary to explore a greener and cleaner technology to recycle textile by-products such as cotton.The present study proposes an effective 3D fabrication method that uses MXene to fabricate waste denim felt into ultralight and flexible supercapacitors through needling and carbonization.The 3D structure provided more sites for loading MXene onto Z-directional fiber bundles,resulting in more efficient ion exchange between the electrolyte and electrodes.Furthermore,the carbonization process removed the specific adverse groups in MXenes,further improving the specific capacitance,energy density,power density and electrical conductivity of supercapacitors.The electrodes achieve a maximum specific capacitance of 1748.5 mF cm-2 and demonstrate remarkable cycling stability maintaining more than 94%after 15,000 galvanostatic charge/discharge cycles.Besides,the obtained supercapacitors present a maximum specific capacitance of 577.5 mF cm^(-2),energy density of 80.2μWh cm^(-2)and power density of 3 mW cm^(-2),respectively.The resulting supercapacitors can be used to develop smart wearable power devices such as smartwatches,laying the foundation for a novel strategy of utilizing waste cotton in a high-quality manner.展开更多
The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledim...The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB.展开更多
Hydrogen peroxide synthesis by electro-reduction of O_(2) to substitute the current anthraquinone process has attracted a great deal of attention. Low oxygen utilization rate and low hydrogen peroxide production remai...Hydrogen peroxide synthesis by electro-reduction of O_(2) to substitute the current anthraquinone process has attracted a great deal of attention. Low oxygen utilization rate and low hydrogen peroxide production remain obstacles to electro-Fenton application. In situ H_(2)O_(2) generated by electrochemical reaction depends on the electrochemical performance of the cathode and the structure of the reactor. Here, novel graphite felt(GF) modified by La-doped CeO_(2)(La-CeO_(2)) was developed as a cathode. A new double chamber electro-Fenton reactor was proposed, where an organic ultrafiltration membrane was used to prevent H_(2)O_(2) from spreading to the anode. The effects of hydrothermal temperature, time and urea concentration on the electrochemical properties of graphite felt were investigated. The accumulated concentration of H_(2)O_(2) on the modified cathode reached 218.4 mg·L^(-1)in 1 h when the optimal conditions of hydrothermal temperature 120 ℃ and urea concentration 0.55%(mass) in 24 h. The degradation rate of methyl orange reached 98.29%. The new electro-Fenton reactor can efficiently produce hydrogen peroxide to degrade various organic substances and has a high potential for treating wastewater in the chemical industry.展开更多
Fabrication, characterization and performance of a porous metal-fiber sintered felt (PMFSF) based on multi-tooth cutting and solid-phase sintering were studied. The PMFSF was used as the anodic methanol barrier in a...Fabrication, characterization and performance of a porous metal-fiber sintered felt (PMFSF) based on multi-tooth cutting and solid-phase sintering were studied. The PMFSF was used as the anodic methanol barrier in a passive air-breathing direct methanol fuel cell to mitigate the effects of methanol crossover. Compared with the commercial SUS316L felt made of bundle-drawn fibers, this self-made PMFSF has larger pore diameter, polarized pore distribution, irregular fiber shape, rougher surface, lower mass flow resistance and evident hydrophobicity. The results reveal that the use of a PMFSF significantly enhances the cell performance since it helps to maintain a balance between the reactant and product management while depressing methanol crossover. The PMFSF with a porosity of 70% yields the highest cell performance at a methanol concentration of 4 mol/L.展开更多
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Nos.52073224,32201491)the Textile Vision Basic Research Program of China(No.J202110)+3 种基金the Scientific Research Project of Shaanxi Provincial Education Department,China(No.22JC035)the Advanced Manufacturing Technology Program of Xi’an Science and Technology Bureau,China(No.21XJZZ0019)the Research Fund for the Doctoral Program of Xi’an Polytechnic University(No.BS202053)the Youth Innovation Team of Shaanxi Universities and Institute of Flexible electronics and Intelligent Textile.
文摘MXene,a transition metal carbide/nitride,has been prominent as an ideal electrochemical active material for supercapacitors.However,the low MXene load limits its practical applications.As environmental concerns and sustainable development become more widely recognized,it is necessary to explore a greener and cleaner technology to recycle textile by-products such as cotton.The present study proposes an effective 3D fabrication method that uses MXene to fabricate waste denim felt into ultralight and flexible supercapacitors through needling and carbonization.The 3D structure provided more sites for loading MXene onto Z-directional fiber bundles,resulting in more efficient ion exchange between the electrolyte and electrodes.Furthermore,the carbonization process removed the specific adverse groups in MXenes,further improving the specific capacitance,energy density,power density and electrical conductivity of supercapacitors.The electrodes achieve a maximum specific capacitance of 1748.5 mF cm-2 and demonstrate remarkable cycling stability maintaining more than 94%after 15,000 galvanostatic charge/discharge cycles.Besides,the obtained supercapacitors present a maximum specific capacitance of 577.5 mF cm^(-2),energy density of 80.2μWh cm^(-2)and power density of 3 mW cm^(-2),respectively.The resulting supercapacitors can be used to develop smart wearable power devices such as smartwatches,laying the foundation for a novel strategy of utilizing waste cotton in a high-quality manner.
基金supported by the National Natural Science Foundation of China(No.51872090)Natural Science Foundation of Hebei Province(No.E2019209433,E2022209158)Colleges and Universities in Hebei Province Science and Technology Research Project(No.JZX2024026).
文摘The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB.
基金supported by the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-KJGG003)Qinglan Plan of the Jiangsu Education Department。
文摘Hydrogen peroxide synthesis by electro-reduction of O_(2) to substitute the current anthraquinone process has attracted a great deal of attention. Low oxygen utilization rate and low hydrogen peroxide production remain obstacles to electro-Fenton application. In situ H_(2)O_(2) generated by electrochemical reaction depends on the electrochemical performance of the cathode and the structure of the reactor. Here, novel graphite felt(GF) modified by La-doped CeO_(2)(La-CeO_(2)) was developed as a cathode. A new double chamber electro-Fenton reactor was proposed, where an organic ultrafiltration membrane was used to prevent H_(2)O_(2) from spreading to the anode. The effects of hydrothermal temperature, time and urea concentration on the electrochemical properties of graphite felt were investigated. The accumulated concentration of H_(2)O_(2) on the modified cathode reached 218.4 mg·L^(-1)in 1 h when the optimal conditions of hydrothermal temperature 120 ℃ and urea concentration 0.55%(mass) in 24 h. The degradation rate of methyl orange reached 98.29%. The new electro-Fenton reactor can efficiently produce hydrogen peroxide to degrade various organic substances and has a high potential for treating wastewater in the chemical industry.
文摘为了研发适用严苛高温工业条件下使用的袋式除尘器用针刺毡滤袋,利用乳液浸渍后处理工艺制备了具有热电/压电特性的硅酸盐(Polar Silicate,PS)粉体/聚四氟乙烯(Polytetrafluoroethylene,PTFE)涂层复合芳纶针刺毡滤袋,探究了PS粉体粒径及附着浓度对复合滤袋捕集效率及阻力特性的影响规律,研究了复合滤袋机械性能,并通过扫描电镜(Scanning Electron Microscope,SEM)对复合滤袋进行了微观形貌分析。结果显示:PS粉体粒径对滤袋的阻力影响不大;PS粉体粒径在>21~32μm时,滤袋的过滤效率最大;最优附着浓度为6 mg/cm^(2)时,滤袋对0.3~1μm粒子的过滤效率提升幅度≥12.58百分点,滤袋的品质因数最高;PS粉体/PTFE/芳纶复合滤袋的耐磨性比芳纶针刺毡滤袋提升了19.86%,挺度提升了22.22%,纵向拉伸强度提升了14.07%。研究所制备的复合滤袋能够适应严苛的高温工业环境,可更好地控制工业排放的微细颗粒物。
基金Projects(50930005,51075155)supported by the National Natural Science Foundation of ChinaProject(20100172110001)supported by PhD Programs Foundation of Ministry of Education of China
文摘Fabrication, characterization and performance of a porous metal-fiber sintered felt (PMFSF) based on multi-tooth cutting and solid-phase sintering were studied. The PMFSF was used as the anodic methanol barrier in a passive air-breathing direct methanol fuel cell to mitigate the effects of methanol crossover. Compared with the commercial SUS316L felt made of bundle-drawn fibers, this self-made PMFSF has larger pore diameter, polarized pore distribution, irregular fiber shape, rougher surface, lower mass flow resistance and evident hydrophobicity. The results reveal that the use of a PMFSF significantly enhances the cell performance since it helps to maintain a balance between the reactant and product management while depressing methanol crossover. The PMFSF with a porosity of 70% yields the highest cell performance at a methanol concentration of 4 mol/L.