Ultraviolet(UV)A signals(320-400 nm)are important in mate choice in numerous species.The sensitivity for UV signals is not only assumed to be costly,but also expected to be a function of the prevailing ecological cond...Ultraviolet(UV)A signals(320-400 nm)are important in mate choice in numerous species.The sensitivity for UV signals is not only assumed to be costly,but also expected to be a function of the prevailing ecological conditions.Generally,those signals are favored by selection that efficiently reach the receiver.A decisive factor for color signaling is the lighting environment,especially in aquatic habitats,as the visibility of signals,and thus costs and benefits,are instantaneously influenced by it.Although ecological aspects of color signal evolution are relatively well-studied,there is little data on specific effects of environmental UV-light conditions on signaling at these shorter wavelengths.We studied wild-caught gravid female 3-spined sticklebacks Gasterosteus aculeatus of 2 photic habitat types(tea-stained and clear-water lakes),possessing great variation in their UV transmission.In 2 treatments,tea-stained and clear-water,preferences for males viewed under UV-present(UV-1-)and UV-absent(UV-)conditions were tested.A preference for males under UV+conditions was found for females from both habitat types,thus stressing the significance of UV signals in stickleback's mate choice decisions.However,females from both habitat types showed the most pronounced preferences for males under UV-h conditions under clear-water test conditions.Moreover,reflectance measurements revealed that the carotenoid-based orange-red breeding coloration in wild-caught males of both habitat types differed significantly in color intensity(higher in clear-water males)and hue(more red shifted in clear-water males)while no significant differences in UV coloration were found.The differential reflection patterns in longer wavelengths suggest that sticklebacks of both habitat types have adapted to the respective water conditions.Adaptations of UV signals in a sexual context to ambient light conditions in both behavior and coloration seem less evident.展开更多
Meiotic drivers distort transmission to the next generation in their favor, with detrimental effects on the fitness of their homologues and the rest of the genome. Male carriers of meiotic drivers commonly inflict cos...Meiotic drivers distort transmission to the next generation in their favor, with detrimental effects on the fitness of their homologues and the rest of the genome. Male carriers of meiotic drivers commonly inflict costs on their mates through genetic incompatibility, reduced fecundity, or biased brood sex ratios. Given these costs, evidence for female discrimination against male carriers is surprisingly rare. One of few examples is the t haplotype in house mice, a meiotic driver that shows strong transmission distortion in males and is typically homozygote lethal. As a consequence, mating between 2 t heterozygous (+/t) mice leads to high embryo mortality. Previous experiments showing that+/t females avoid this incompatibility cost by preferring +/+ versus +/t males have inferred preference based on olfactory cues or brief social interactions. Evidence from mating contexts in laboratory settings and semi-natural populations has been inconclusive. Here, we investigated female choice from a large number of no-choice mating trials. We found no evidence for discrimination against+/t males based on mating, remating, and copulatory behavior. Further, we found no evidence for avoidance of incompatibility through selective interactions between game- tes. The likelihood of mating showed significant effects of female weight and genotype, suggesting that our test paradigm enabled females to exhibit mate choice. We discuss the strengths and limitations of our approach. By explicitly considering selection at both the individual and gene level, we argue why precopulatory female discrimination by+/t females may be less evolutionarily stable than discrimination by all females based on postcopulatory mechanisms.展开更多
One approach to understand the importance of reproductive barriers to the speciation process is to study the break- down of barriers between formerly distinct species. One reproductive barrier, sexual isolation, reduc...One approach to understand the importance of reproductive barriers to the speciation process is to study the break- down of barriers between formerly distinct species. One reproductive barrier, sexual isolation, reduces gene flow between species through differences in mate preferences and mating signals and is likely important for species formation and maintenance. We measure sexual isolation in two limnetic-benthic threespine stickleback species pairs (Gasterosteus spp.). One species pair main- tains strong reproductive isolation while the other species pair has recently collapsed into a hybrid swarm. We compare the strength of sexual isolation in the hybridizing pair to the currently isolated pair. We provide the first evidence that sexual isolation has been lost in the hybridizing pair and show furthermore that preferences females have for conspecific mates and the traits they use to distinguish conspecific and heterospecific males contribute to this loss. This work highlights the fragility of reproductive isolation between young species pairs and considers the role of sexual isolation in speciation [Current Zoology 59 (5): 591-603, 2013].展开更多
According to current theoretical predictions, any deleterious mutations that reduce nonsexual fitness may have a negative influence on mating success. This means that sexual selection may remove deleterious mutations ...According to current theoretical predictions, any deleterious mutations that reduce nonsexual fitness may have a negative influence on mating success. This means that sexual selection may remove deleterious mutations from the populations. Males of good genetic quality should be more successful in mating, compared to the males of lower genetic quality. As mating success is a condition dependent trait, large fractions of the genome may be a target of sexual selection and many behavioral traits are likely to be condition dependent. We manipulated the genetic quality of Drosophila subobscura males by inducing mutations with ionizing radiation and observed the effects of the obtained heterozygous mutations on male mating behavior: courtship occurrence, courtship latency, mating occurrence, latency to mating and duration of mating. We found possible effects of mutations. Females mated more frequently with male progeny of nonirradiated males and that these males courted females faster compared to the male progeny of irradiated males. Our findings indicate a possible important role of sexual selection in purging deleterious mutations.展开更多
基金This research was funded by the Deutsche Forschungsgemeinschaft(BA 2885/1-5).
文摘Ultraviolet(UV)A signals(320-400 nm)are important in mate choice in numerous species.The sensitivity for UV signals is not only assumed to be costly,but also expected to be a function of the prevailing ecological conditions.Generally,those signals are favored by selection that efficiently reach the receiver.A decisive factor for color signaling is the lighting environment,especially in aquatic habitats,as the visibility of signals,and thus costs and benefits,are instantaneously influenced by it.Although ecological aspects of color signal evolution are relatively well-studied,there is little data on specific effects of environmental UV-light conditions on signaling at these shorter wavelengths.We studied wild-caught gravid female 3-spined sticklebacks Gasterosteus aculeatus of 2 photic habitat types(tea-stained and clear-water lakes),possessing great variation in their UV transmission.In 2 treatments,tea-stained and clear-water,preferences for males viewed under UV-present(UV-1-)and UV-absent(UV-)conditions were tested.A preference for males under UV+conditions was found for females from both habitat types,thus stressing the significance of UV signals in stickleback's mate choice decisions.However,females from both habitat types showed the most pronounced preferences for males under UV-h conditions under clear-water test conditions.Moreover,reflectance measurements revealed that the carotenoid-based orange-red breeding coloration in wild-caught males of both habitat types differed significantly in color intensity(higher in clear-water males)and hue(more red shifted in clear-water males)while no significant differences in UV coloration were found.The differential reflection patterns in longer wavelengths suggest that sticklebacks of both habitat types have adapted to the respective water conditions.Adaptations of UV signals in a sexual context to ambient light conditions in both behavior and coloration seem less evident.
基金Acknowledgments We thank Jari Garbely for DNA extraction and genotyping, Gabi Stichel and Sally Steinert for assistance with animal husbandry, Kerstin Musolf for advice on oestrus stage determination, and Barbara Konig for support. We also thank Andri Manser for helpful discussions and Laura Travers and 2 anonymous reviewers for comments on earlier versions of the manuscript.This study was supported by the Swiss National Science Foundation Grant 138389.
文摘Meiotic drivers distort transmission to the next generation in their favor, with detrimental effects on the fitness of their homologues and the rest of the genome. Male carriers of meiotic drivers commonly inflict costs on their mates through genetic incompatibility, reduced fecundity, or biased brood sex ratios. Given these costs, evidence for female discrimination against male carriers is surprisingly rare. One of few examples is the t haplotype in house mice, a meiotic driver that shows strong transmission distortion in males and is typically homozygote lethal. As a consequence, mating between 2 t heterozygous (+/t) mice leads to high embryo mortality. Previous experiments showing that+/t females avoid this incompatibility cost by preferring +/+ versus +/t males have inferred preference based on olfactory cues or brief social interactions. Evidence from mating contexts in laboratory settings and semi-natural populations has been inconclusive. Here, we investigated female choice from a large number of no-choice mating trials. We found no evidence for discrimination against+/t males based on mating, remating, and copulatory behavior. Further, we found no evidence for avoidance of incompatibility through selective interactions between game- tes. The likelihood of mating showed significant effects of female weight and genotype, suggesting that our test paradigm enabled females to exhibit mate choice. We discuss the strengths and limitations of our approach. By explicitly considering selection at both the individual and gene level, we argue why precopulatory female discrimination by+/t females may be less evolutionarily stable than discrimination by all females based on postcopulatory mechanisms.
基金Acknowledgements We thank C. Long and M. Rounds for help with data collection. Thanks to Tom Getty, Genevieve Kozak, Michael Jennions, several anonymous reviewers, and the Boughman lab for helping to improve this manuscript. Research was conducted under permits from the Ministry of the Environment, BC and approval from University of Wis- consin-Madison Institutional Animal Care and Use Committee. This work was supported by the Emlen Fund from the Zoolo- gy Department of the University of Wisconsin, Madison to ACRL and the National Science Foundation to JWB.
文摘One approach to understand the importance of reproductive barriers to the speciation process is to study the break- down of barriers between formerly distinct species. One reproductive barrier, sexual isolation, reduces gene flow between species through differences in mate preferences and mating signals and is likely important for species formation and maintenance. We measure sexual isolation in two limnetic-benthic threespine stickleback species pairs (Gasterosteus spp.). One species pair main- tains strong reproductive isolation while the other species pair has recently collapsed into a hybrid swarm. We compare the strength of sexual isolation in the hybridizing pair to the currently isolated pair. We provide the first evidence that sexual isolation has been lost in the hybridizing pair and show furthermore that preferences females have for conspecific mates and the traits they use to distinguish conspecific and heterospecific males contribute to this loss. This work highlights the fragility of reproductive isolation between young species pairs and considers the role of sexual isolation in speciation [Current Zoology 59 (5): 591-603, 2013].
文摘According to current theoretical predictions, any deleterious mutations that reduce nonsexual fitness may have a negative influence on mating success. This means that sexual selection may remove deleterious mutations from the populations. Males of good genetic quality should be more successful in mating, compared to the males of lower genetic quality. As mating success is a condition dependent trait, large fractions of the genome may be a target of sexual selection and many behavioral traits are likely to be condition dependent. We manipulated the genetic quality of Drosophila subobscura males by inducing mutations with ionizing radiation and observed the effects of the obtained heterozygous mutations on male mating behavior: courtship occurrence, courtship latency, mating occurrence, latency to mating and duration of mating. We found possible effects of mutations. Females mated more frequently with male progeny of nonirradiated males and that these males courted females faster compared to the male progeny of irradiated males. Our findings indicate a possible important role of sexual selection in purging deleterious mutations.