The blue-shifted supercontinuum generation in a photonic crystal fiber pumped by high peak power femtosecond pulses with a wavelength located in the anomalous dispersion region is investigated experimentally and numer...The blue-shifted supercontinuum generation in a photonic crystal fiber pumped by high peak power femtosecond pulses with a wavelength located in the anomalous dispersion region is investigated experimentally and numerically.The formation of a blue-shifted enhanced supercontinuum due to the pulse collapse is demonstrated.The process of the pulse collapse is measured by using the grating-eliminated no-nonsense observation of ultrafast incident laser light e-fields technique(GRENOUILLE).Numerical simulations in spectral and temporal domains are conducted.The data from the numerical simulations are in good agreement with the experimental results.Our experimental results and numerical simulations show that pulse collapse is the determining factor in the generation of a blue-shifted supercontinuum.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61178025)the Natural Science Foundation of Shandong Province,China(Grant Nos. ZR2009AL002 and ZR2010FQ007)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China (Grant No. HIT.NSRIF. 2008087)
文摘The blue-shifted supercontinuum generation in a photonic crystal fiber pumped by high peak power femtosecond pulses with a wavelength located in the anomalous dispersion region is investigated experimentally and numerically.The formation of a blue-shifted enhanced supercontinuum due to the pulse collapse is demonstrated.The process of the pulse collapse is measured by using the grating-eliminated no-nonsense observation of ultrafast incident laser light e-fields technique(GRENOUILLE).Numerical simulations in spectral and temporal domains are conducted.The data from the numerical simulations are in good agreement with the experimental results.Our experimental results and numerical simulations show that pulse collapse is the determining factor in the generation of a blue-shifted supercontinuum.