Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material inte...Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material interaction.Under the extreme nonequilibrium conditions imposed by femtosecond laser irradiation,many fundamental questions concerning the physical origin of the material removal process remain unanswered.In this review,cutting-edge ultrafast dynamic observation techniques for investigating the fundamental questions,including timeresolved pump-probe shadowgraphy,ultrafast continuous optical imaging,and four-dimensional ultrafast scanning electron microscopy,are comprehensively surveyed.Each technique is described in depth,beginning with its basic principle,followed by a description of its representative applications in laser-material interaction and its strengths and limitations.The consideration of temporal and spatial resolutions and panoramic measurement at different scales are two major challenges.Hence,the prospects for technical advancement in this field are discussed finally.展开更多
Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs hav...Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.展开更多
The measurement techniques of femtosecond spectroscopy are effective method to investigate ultrafast dynamics, they are widely used in the fields of physics, chemistry and biology. In this paper, the principle, exper...The measurement techniques of femtosecond spectroscopy are effective method to investigate ultrafast dynamics, they are widely used in the fields of physics, chemistry and biology. In this paper, the principle, experiment setup and the approaches to deal with the experiment data were presented. Then different measurement techniques such as transient absorption spectroscopy, photon echoes, optical Kerr effect and degenerate four-wave mixing were explained with special examples. At last, the application prospect of measurement techniques of femtosecond spectroscopy was forecasted.展开更多
A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the correspond- ing time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal struc...A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the correspond- ing time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal structures of femtosecond laser pulses, normally not observable by the ordinary intensity autocorrelator, can be detected through intuitively analyz- ing the ultrafast evolution process of the air plasma induced by the femtosecond laser pulses under examination. With this method, existence of pre- and post-pulses has been clearly unveiled within the time window of 4-150 fs in reference with the main 50-fs laser pulses output from a commercial 1-kHz femtosecond laser amplifier. The unique advantage of the proposed method is that it can directly provide valuable information about the pulse temporal structures' effect on the laser-induced ionization or material ablation.展开更多
The pump-probe technique is an effective method to investigate ultrafast dynamics. And it is widely used in fundamental and application fields of Physics, Chemistry and Biology. The dynamics of bulk GaAs was investiga...The pump-probe technique is an effective method to investigate ultrafast dynamics. And it is widely used in fundamental and application fields of Physics, Chemistry and Biology. The dynamics of bulk GaAs was investigated by femtosecond laser. By changing the area of pump spot, different laser fluences were obtained to excite electron from valence states to conduction states. And it was found that the amplitude of reflectivity change is different. When the carrier density N is 1.44×10^18/cm^3, the change of refraction index is about Dnc=-3.33×10^-5. And when N is0. 36×10^10/cm^3, the change is -2.0×10^-5.展开更多
The pump-probe technique is an effective instrument for investigating ultrafast dynamics. It is widely used in fundamental research and application fields, such as Physics, Chemistry and Biology. First introduced is t...The pump-probe technique is an effective instrument for investigating ultrafast dynamics. It is widely used in fundamental research and application fields, such as Physics, Chemistry and Biology. First introduced is the effect process between femtosecond laser and matter. And set forth is the fundamental of ultrafast phenomena and theory foundation of data disposal. Then introduced is the demand of making samples in experiment, experiment equipment, and the theory of strain pulse. We detect transient reflectivity change on surface of GaAs at different delayed time using femtosecond transient reflection spectroscopy. The changing curve consists of three parts: original scattering process of 100 fs, carriers-lattice thermal equilibrium of l. 5 ps and recombination process of 500 los.展开更多
By using the home-made femtosecond laser system and the time-of-flight mass spectrometer, the decay dynamics of excited carbon disulfide (CS2) and ammonia (NH3) are investigated in real time by pump-probe mul-tiphoton...By using the home-made femtosecond laser system and the time-of-flight mass spectrometer, the decay dynamics of excited carbon disulfide (CS2) and ammonia (NH3) are investigated in real time by pump-probe mul-tiphoton ionization detection. The estimated lifetime constantof the NH3 A1A2 state (51±4 fs) agreed quite well with the literature report. For the first time, the decay lifetime constants of the NH3 E’1A’1, state (937±93 fs), the CS2 a3A2 state (153±10 fs), and the CS2 Rydberg state[3/2](3IIg) (948±23 fs) are obtained.展开更多
Over the past decade the integration of ultrafast spectroscopy with nanoscience has greatly propelled the development of nanoscience, as the key information gleaned from the mechanistic studies with the assistance of ...Over the past decade the integration of ultrafast spectroscopy with nanoscience has greatly propelled the development of nanoscience, as the key information gleaned from the mechanistic studies with the assistance of ultrafast spectroscopy enables a deeper understanding of the structure–function interplay and various interactions involved in the nanosystems.This mini-review presents an overview of the recent advances achieved in our ultrafast spectroscopy laboratory that address the ultrafast dynamics and related mechanisms in several representative nanomaterial complex systems by means of femtosecond time-resolved transient absorption spectroscopy. We attempt to convey instructive, consistent information regarding the important processes, pathways, dynamics, and interactions involved in the nanomaterial complex systems,most of which exhibit excellent performance in photocatalysis.展开更多
The intra- and inter-band relaxation dynamics of CdSe/CdS/ZnS core/shell/shell quantum dots are investigated with the aid of time-resolved nonlinear transmission spectra which are obtained using femtosecond pump-probe...The intra- and inter-band relaxation dynamics of CdSe/CdS/ZnS core/shell/shell quantum dots are investigated with the aid of time-resolved nonlinear transmission spectra which are obtained using femtosecond pump-probe technique. By selectively exciting the core and shell carrier, the dynamics are studied in detail. Carrier relaxation is found faster in the conduction band of the CdS shell (about 130 fs) than that in the conduction band of the CdSe core (about 400 fs). From the experiments it is distinctly demonstrated the existence of the defect states in the interface between the CdSe core and the CdS shell, indicating that ultrafast spectroscopy might be a suitable tool in studying interface and surface morphology properties in nanosystems.展开更多
The ultrafast dynamics of benzaldehyde upon 260, 271, 284, and 287 nm excitations have been studied by femtosecond pinup-probe time-of-flight mass spectrometry. A bi-exponential decay component model was applied to fi...The ultrafast dynamics of benzaldehyde upon 260, 271, 284, and 287 nm excitations have been studied by femtosecond pinup-probe time-of-flight mass spectrometry. A bi-exponential decay component model was applied to fit the transient profiles of benzaldehyde ions and fragment ions. At the S2 origin, the first decay of the component was attributed to the internal conversion to the high vibrational levels of S1 state. Lifetimes of the first component decreased with increasing vibrational energy, due to the influence of high density of the vibrational levels. The second decay was assigned to the vibrational relaxation of the S1 whose lifetime was about 600 fs. Upon 287 nm excitation, the first decay became ultra-short (-56 fs) which was taken for the intersystem cross from S1 to T2, while the second decay component was attributed to the vibrational relaxation. The pump-probe transient of fragment was also studied with the different probe intensity at 284 nm pump.展开更多
Dynamics of excited m-dichlorobenzene is investigated in real time by femtosecond pump-probe method, combined with time-of-flight mass spectrometric detection in a supersonic molecular beam. The yields of the parent i...Dynamics of excited m-dichlorobenzene is investigated in real time by femtosecond pump-probe method, combined with time-of-flight mass spectrometric detection in a supersonic molecular beam. The yields of the parent ion and daughter ion C6H4Cl+ are examined as a func-tion of the delay between the 270 and 810 nm femtosecond laser pulses, respectively. The life-time of the first singlet excited state S1 of m-dichlorobenzene is measured. The origin of this daughter ion C6H4Cl+ is discussed. The ladder mechanism is proposed to form the fragment ion. In addition, our experimental results exhibit a rapid damped sinusoidal oscillation over interme-diate time delays, which is due to quantum beat effects.展开更多
Surface-plasmon(SP) modes triggered on metal nanostructures were strongly coupled to the local restricted electronmagnetic field supported by a Fabry-Perot(F-P) cavity. This hybrid system provided an ideal platfor...Surface-plasmon(SP) modes triggered on metal nanostructures were strongly coupled to the local restricted electronmagnetic field supported by a Fabry-Perot(F-P) cavity. This hybrid system provided an ideal platform to study the interaction between SP and F-P resonators on nanoscales. However, the time-resolved transient energy transfer process is far from resolved. In this letter, we addressed this question by time-resolved femtosecond pump-probe technology and readily observed the transient energy transfer between SP and nanocavity resonant ener- gy. The interaction resulted in the emergence of hybrid splitting mode and the oscillating dynamics between upper and lower polariton branch(the split hybrid states). Our work may provide a well comprehension of strong coupling between SP modes and F-P resonator modes, and lay some groundwork for many future photonic applications.展开更多
Optical properties and ultrafast exciton relaxation dynamics in PbS and core/shell PbS/CdS quantum dots(QDs) have been studied using UV-vis absorption and fluorescence spectroscopy as well as femtosecond(fs) transient...Optical properties and ultrafast exciton relaxation dynamics in PbS and core/shell PbS/CdS quantum dots(QDs) have been studied using UV-vis absorption and fluorescence spectroscopy as well as femtosecond(fs) transient absorption spectroscopy.The electronic absorption spectrum of the PbS QDs features broad absorption in the entire near IR-vis-UV region with a monotonic increase in intensity towards shorter wavelength.Relative to PbS,the absorption of the core/shell PbS/CdS QDs shows a slight blue shift in the 600?800 nm region,due to the decrease of the PbS crystal size caused by the synthetic process of the core/shell structure,and increased absorption near 400 nm due to the CdS shell.The PL of the PbS/CdS QDs was ~2.6 times more intense than that of the PbS QDs,due to surface passivation of PbS by CdS,and blue-shifted,attributable to smaller PbS size and thereby stronger quantum confinement in the core/shell QDs.Fs transient absorption measurements of both systems showed a strong transient absorption feature from 600 to 750 nm following excitation at 750 nm.The transient absorption decays can be fit to a biexponential with time constants of 8 and 100 ps for PbS and 6 and 80 ps for PbS/CdS.The amplitude and lifetime of the fast component were excitation intensity dependent,with the amplitude increasing more than linearly with increasing excitation intensity and the lifetime decreasing with increasing intensity.The fast decay is attributed to exciton-exciton annihilation and it occurs more readily for the PbS/CdS than the PbS QDs,which is attributed to a lower density of trap states in the core/shell QDs,as supported by their stronger PL.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.51975054,61605140 and 11704028the National Key R&D Program of China(2017YFB1104300)。
文摘Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material interaction.Under the extreme nonequilibrium conditions imposed by femtosecond laser irradiation,many fundamental questions concerning the physical origin of the material removal process remain unanswered.In this review,cutting-edge ultrafast dynamic observation techniques for investigating the fundamental questions,including timeresolved pump-probe shadowgraphy,ultrafast continuous optical imaging,and four-dimensional ultrafast scanning electron microscopy,are comprehensively surveyed.Each technique is described in depth,beginning with its basic principle,followed by a description of its representative applications in laser-material interaction and its strengths and limitations.The consideration of temporal and spatial resolutions and panoramic measurement at different scales are two major challenges.Hence,the prospects for technical advancement in this field are discussed finally.
基金This work was supported by the National Natural Science Foundation of China(12074123,11804227,91950112)the Ministry of Science and Technology of China(Grant No.2021YFA1401100)the Foundation of‘Manufacturing beyond limits’of Shanghai.
文摘Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.
文摘The measurement techniques of femtosecond spectroscopy are effective method to investigate ultrafast dynamics, they are widely used in the fields of physics, chemistry and biology. In this paper, the principle, experiment setup and the approaches to deal with the experiment data were presented. Then different measurement techniques such as transient absorption spectroscopy, photon echoes, optical Kerr effect and degenerate four-wave mixing were explained with special examples. At last, the application prospect of measurement techniques of femtosecond spectroscopy was forecasted.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11004111 and 61137001)the Natural Science Foundation of Tianjin City,China (Grant No. 10JCZDGX35100)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100031120034)the Fundamental Research Funds for the Central Universities of China
文摘A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the correspond- ing time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal structures of femtosecond laser pulses, normally not observable by the ordinary intensity autocorrelator, can be detected through intuitively analyz- ing the ultrafast evolution process of the air plasma induced by the femtosecond laser pulses under examination. With this method, existence of pre- and post-pulses has been clearly unveiled within the time window of 4-150 fs in reference with the main 50-fs laser pulses output from a commercial 1-kHz femtosecond laser amplifier. The unique advantage of the proposed method is that it can directly provide valuable information about the pulse temporal structures' effect on the laser-induced ionization or material ablation.
文摘The pump-probe technique is an effective method to investigate ultrafast dynamics. And it is widely used in fundamental and application fields of Physics, Chemistry and Biology. The dynamics of bulk GaAs was investigated by femtosecond laser. By changing the area of pump spot, different laser fluences were obtained to excite electron from valence states to conduction states. And it was found that the amplitude of reflectivity change is different. When the carrier density N is 1.44×10^18/cm^3, the change of refraction index is about Dnc=-3.33×10^-5. And when N is0. 36×10^10/cm^3, the change is -2.0×10^-5.
基金National Natural Science Foundation of China(50275089)
文摘The pump-probe technique is an effective instrument for investigating ultrafast dynamics. It is widely used in fundamental research and application fields, such as Physics, Chemistry and Biology. First introduced is the effect process between femtosecond laser and matter. And set forth is the fundamental of ultrafast phenomena and theory foundation of data disposal. Then introduced is the demand of making samples in experiment, experiment equipment, and the theory of strain pulse. We detect transient reflectivity change on surface of GaAs at different delayed time using femtosecond transient reflection spectroscopy. The changing curve consists of three parts: original scattering process of 100 fs, carriers-lattice thermal equilibrium of l. 5 ps and recombination process of 500 los.
基金This work was supported by the NationalKey Basic Research Special Foundation of China (Grant No. G1999075300) the National Natural Science Foundation of China (Grant Nos. 29833080, 20003012 and 29973044).
文摘By using the home-made femtosecond laser system and the time-of-flight mass spectrometer, the decay dynamics of excited carbon disulfide (CS2) and ammonia (NH3) are investigated in real time by pump-probe mul-tiphoton ionization detection. The estimated lifetime constantof the NH3 A1A2 state (51±4 fs) agreed quite well with the literature report. For the first time, the decay lifetime constants of the NH3 E’1A’1, state (937±93 fs), the CS2 a3A2 state (153±10 fs), and the CS2 Rydberg state[3/2](3IIg) (948±23 fs) are obtained.
基金support from the National Natural Science Foundation of China (21573211 and 21421063)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB01020200)the Fundamental Research Funds for the Central Universities of China (WK2340000063)
文摘Over the past decade the integration of ultrafast spectroscopy with nanoscience has greatly propelled the development of nanoscience, as the key information gleaned from the mechanistic studies with the assistance of ultrafast spectroscopy enables a deeper understanding of the structure–function interplay and various interactions involved in the nanosystems.This mini-review presents an overview of the recent advances achieved in our ultrafast spectroscopy laboratory that address the ultrafast dynamics and related mechanisms in several representative nanomaterial complex systems by means of femtosecond time-resolved transient absorption spectroscopy. We attempt to convey instructive, consistent information regarding the important processes, pathways, dynamics, and interactions involved in the nanomaterial complex systems,most of which exhibit excellent performance in photocatalysis.
基金This work was supported by the National Natural Science Foundation of China (No.11074003) and the Key Program of Educational Commission of Anhui Province of China (No.KJ2010AI32). For the help of Prof. J. L. Zhao at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in sample preparation is greatly appreciated.
文摘The intra- and inter-band relaxation dynamics of CdSe/CdS/ZnS core/shell/shell quantum dots are investigated with the aid of time-resolved nonlinear transmission spectra which are obtained using femtosecond pump-probe technique. By selectively exciting the core and shell carrier, the dynamics are studied in detail. Carrier relaxation is found faster in the conduction band of the CdS shell (about 130 fs) than that in the conduction band of the CdSe core (about 400 fs). From the experiments it is distinctly demonstrated the existence of the defect states in the interface between the CdSe core and the CdS shell, indicating that ultrafast spectroscopy might be a suitable tool in studying interface and surface morphology properties in nanosystems.
基金V. ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20633070 and No.20473090).
文摘The ultrafast dynamics of benzaldehyde upon 260, 271, 284, and 287 nm excitations have been studied by femtosecond pinup-probe time-of-flight mass spectrometry. A bi-exponential decay component model was applied to fit the transient profiles of benzaldehyde ions and fragment ions. At the S2 origin, the first decay of the component was attributed to the internal conversion to the high vibrational levels of S1 state. Lifetimes of the first component decreased with increasing vibrational energy, due to the influence of high density of the vibrational levels. The second decay was assigned to the vibrational relaxation of the S1 whose lifetime was about 600 fs. Upon 287 nm excitation, the first decay became ultra-short (-56 fs) which was taken for the intersystem cross from S1 to T2, while the second decay component was attributed to the vibrational relaxation. The pump-probe transient of fragment was also studied with the different probe intensity at 284 nm pump.
基金This work was supported by the National Key Basic Research Special Funding Project(Grant No.G1999075301)the National Natural Science Foundation of China(Grant No.20273072)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.K2002F2).
文摘Dynamics of excited m-dichlorobenzene is investigated in real time by femtosecond pump-probe method, combined with time-of-flight mass spectrometric detection in a supersonic molecular beam. The yields of the parent ion and daughter ion C6H4Cl+ are examined as a func-tion of the delay between the 270 and 810 nm femtosecond laser pulses, respectively. The life-time of the first singlet excited state S1 of m-dichlorobenzene is measured. The origin of this daughter ion C6H4Cl+ is discussed. The ladder mechanism is proposed to form the fragment ion. In addition, our experimental results exhibit a rapid damped sinusoidal oscillation over interme-diate time delays, which is due to quantum beat effects.
基金Supported by the National Basic Research Program of ChinafNos.2014CB921302, 2011CB013003), the National Natural Science Foundation, of China(Nos.21273096, 61378053) and the Doctoral Fund of Ministry of Education of China(No.20130061110048).
文摘Surface-plasmon(SP) modes triggered on metal nanostructures were strongly coupled to the local restricted electronmagnetic field supported by a Fabry-Perot(F-P) cavity. This hybrid system provided an ideal platform to study the interaction between SP and F-P resonators on nanoscales. However, the time-resolved transient energy transfer process is far from resolved. In this letter, we addressed this question by time-resolved femtosecond pump-probe technology and readily observed the transient energy transfer between SP and nanocavity resonant ener- gy. The interaction resulted in the emergence of hybrid splitting mode and the oscillating dynamics between upper and lower polariton branch(the split hybrid states). Our work may provide a well comprehension of strong coupling between SP modes and F-P resonator modes, and lay some groundwork for many future photonic applications.
基金supported by the Basic Energy Sciences Division of the US DOE (DE-FG02-ER46232)
文摘Optical properties and ultrafast exciton relaxation dynamics in PbS and core/shell PbS/CdS quantum dots(QDs) have been studied using UV-vis absorption and fluorescence spectroscopy as well as femtosecond(fs) transient absorption spectroscopy.The electronic absorption spectrum of the PbS QDs features broad absorption in the entire near IR-vis-UV region with a monotonic increase in intensity towards shorter wavelength.Relative to PbS,the absorption of the core/shell PbS/CdS QDs shows a slight blue shift in the 600?800 nm region,due to the decrease of the PbS crystal size caused by the synthetic process of the core/shell structure,and increased absorption near 400 nm due to the CdS shell.The PL of the PbS/CdS QDs was ~2.6 times more intense than that of the PbS QDs,due to surface passivation of PbS by CdS,and blue-shifted,attributable to smaller PbS size and thereby stronger quantum confinement in the core/shell QDs.Fs transient absorption measurements of both systems showed a strong transient absorption feature from 600 to 750 nm following excitation at 750 nm.The transient absorption decays can be fit to a biexponential with time constants of 8 and 100 ps for PbS and 6 and 80 ps for PbS/CdS.The amplitude and lifetime of the fast component were excitation intensity dependent,with the amplitude increasing more than linearly with increasing excitation intensity and the lifetime decreasing with increasing intensity.The fast decay is attributed to exciton-exciton annihilation and it occurs more readily for the PbS/CdS than the PbS QDs,which is attributed to a lower density of trap states in the core/shell QDs,as supported by their stronger PL.