[Objective] The aim was to optimize the fermentation conditions of acid resistant α-amylase producing strain. [Method] Based on the selection of an acid resistant α-amylase producing strain,the fermentation conditio...[Objective] The aim was to optimize the fermentation conditions of acid resistant α-amylase producing strain. [Method] Based on the selection of an acid resistant α-amylase producing strain,the fermentation conditions including C,N contents and initial pH of culture medium,seed age,inoculum size,rotation speed of shake flask and fermentation temperature were optimized. [Result] The optimum fermentation conditions for acid resistant α-amylase producing strain were:seed age 14 h,inoculum size 8%,initial pH 5.5,fermentation temperature 35 ℃,rotation speed 150 r/min,the volume of inoculum broth 25 ml,C content 1.0% and N content 0.5%. [Conclusion] Under the optimum fermentation conditions,α-amylase activity reached 31.4 U/ml,which was 65.3 % higher than that before optimization.展开更多
Solid-state fermentation has certain advantages in improving the yield of lipopetide, Box-Behnken Design(BBD) was adopted to optimize the producing condition of the antibacterial lipopetide produced by Bacillus natt...Solid-state fermentation has certain advantages in improving the yield of lipopetide, Box-Behnken Design(BBD) was adopted to optimize the producing condition of the antibacterial lipopetide produced by Bacillus natto in this article. The optimal solid state fermentation conditions were obtained: 10 g solid medium(7 g of wheat bran, 3 g of soybean meal) with appropriate inorganic salt(glucose 0.67%,sodium glutamate 0.64%,(NH4)2SO40.15%, K2HPO40.10%); moisture content 123.78%; inoculation amount 10%; cultivation temperature 36.75 ℃ and cultivation time 72.4 h. The maximum production of lipopetide is 61.76 mg/gds under such conditions. This is the first report on the optimization of lipopeptide fermentation conditions in solid-state fermentation by wheat bran and soybean meal with Bacillus natto NT-6 strain, and will contribute to the development of lipopetide production.展开更多
[Objective] The aim was to optimize the fermentation medium and conditions of antibiotic active substances produced by Antarctic psychrotrophic bacterium Rheinheimera sp.97.[Method] Single-factor experiment and orthog...[Objective] The aim was to optimize the fermentation medium and conditions of antibiotic active substances produced by Antarctic psychrotrophic bacterium Rheinheimera sp.97.[Method] Single-factor experiment and orthogonal test were adopted to optimize the fermentation medium of antibiotic active substances produced by Antarctic psychrotrophic bacterium R.sp.97,while the fermentation conditions were optimized by single-factor experiment.[Result] The optimum fermentation medium for the antibiotic active substances production was as follows:tryptone 3.0 g/L,ammonium sulfate 1.0 g/L,starch 2.0 g/L,NaCl 15.0 g/L.The optimized fermentation conditions were as follows:the starting pH of medium was 8.0,fermentation temperature was 10 ℃,liquid volume in Erlenmeyer flask was 30 %(V/V)and inoculation amount was 1%(V/V).Under the optimized fermentation medium and conditions,the antibacterial activity of R.sp.97 was increased by 18.1%.[Conclusion] This study had provided basis for the antibiotic active substances produced by Antarctic psychrotrophic bacterium R.sp.97.展开更多
A sequential statistical approach was applied to optimizing the fermentation medium of epothilones(Epos) production by means of a mutant which was obtained by treating polyangium cellulosum ATCC 15384 with nitrite a...A sequential statistical approach was applied to optimizing the fermentation medium of epothilones(Epos) production by means of a mutant which was obtained by treating polyangium cellulosum ATCC 15384 with nitrite and ultraviolet. The effects of different carbon sources and nitrogen sources on the fermentation medium were tested, and the suitable ones were selected. Then a uniform design was employed to design the experiments. A linear model was developed for identifying the significant components in fermentation medium, while a third degree polynomial model was used for studying the relationship between the concentration of the components in fermentation medium and the yield of Epos(YEPs). A pattern search method was used for searching the optimum fermentation medium in the test space, which was as follows(g/L): potassium nitrate 8.00, soybean peptone 17.60, potassium hydrogen phos- phate 1.00, beef extraction 6.46, yeast extraction 1.00, calcium chloride 0.25, sodium chloride 1.00 and ferric chloride 0.02. The optimum fermentation medium was expected to result in a yield of Epos(YEPs) of 2.48 mg/L. The validation experiments with the optimum medium were performed in triplicate and the average yield of Epos was 2.45 mg/L which was 7.78 times higher than that of Epos prepared without optimization.展开更多
Response surface methodology (RSM) was used to optimize the fermentation medium for enhancing pyruvic acid production by Torulopsis glabrata TP19. In the first step of optimization, with Plackett-Burman design, ammoni...Response surface methodology (RSM) was used to optimize the fermentation medium for enhancing pyruvic acid production by Torulopsis glabrata TP19. In the first step of optimization, with Plackett-Burman design, ammonium sulfate, glucose and nicotinic acid were found to be the important factors affecting pyruvic acid production significantly. In the second step, a 23 full factorial central composite design and RSM were applied to determine the optimal concentration of each significant variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the critical components were obtained as follows: ammonium sulfate 0.7498 (10.75 g/L), glucose 0.9383 (109.38 g/L) and nicotinic acid 0.3633 (7.86 mg/L) with a predicted value of maximum pyruvic acid production of 42.2 g/L. Under the optimal conditions, the practical pyruvic acid production was 42.4 g/L. The determination coefficient (R2) was 0.9483, which ensures adequate credibility of the model. By scaling up fermentation from flask to jar fermentor, we obtained promising results.展开更多
In order to improve the production of human-like collagen III(HLC III)by fed-batch culture of recombinant Escherichia coli BL21,the Plackett-Burman and Box-Behnken design were applied to optimize the fermentation proc...In order to improve the production of human-like collagen III(HLC III)by fed-batch culture of recombinant Escherichia coli BL21,the Plackett-Burman and Box-Behnken design were applied to optimize the fermentation process parameters.Three variables(induction time,inoculum age and pH),which have significant effects on HLC III production,were selected from eight variables by Plackett-Burman design.With the regression coefficient analysis in the Box-Behnken design,a relationship between HLC III production and three significant factors was obtained,and the optimum levels of the three variables were as follows:induction time 3.2h,inoculum age 12.6 h and pH 6.7.The 3D response surface plots and 2D contour plots created by the Box-Behnken design showed that the interaction between induction time and pH and that between innoculum age and pH were significant.An average 9.68 g·L1HLC III production was attained in the validation experiment under optimized condition,which was 80%higher than the yield of 5.36 g·L1before optimization.展开更多
An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to impr...An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to improve very high gravity (VHG) ethanol fermentation, showing over 30% increase in final ethanol (from 13.1% to 17.1%, by volume), 29% decrease in fermentation time (from 84 to 60 h), 80% increase in biomass formation and 26% increase in glucose utilization. Experiments also revealed physiological aspects linked to the fermentation enhancements. Compared to the control, trehalose in the cells grown in optimal fermentation medium increased 17.9-, 2.8-, 1.9-, 1.8- and 1.9-fold at the fermentation time of 12, 24, 36, 48 and 60 h, respectively. Its sharp rise at the early stage of fermentation when there was a considerable osmotic stress suggested that trehalose played an important role in promoting fermentation. Meanwhile, at the identical five fermentation time, the plasma membrane ATPase activity of the cells grown in optimal medium was 2.3, 1.8, 1.6, 1.5 and 1.3 times that of the control, respectively. Their disparities in enzymatic activity became wider when the glucose levels were dramatically changed for ethanol production, suggesting this enzyme also contributed to the fermentation improvements. Thus, medium optimization for VHG ethanol fermentation was found to trigger the increased yeast trehalose accumulation and plasma membrane ATPase activity.展开更多
In this study, a xylanase-produeing Aspergillus niger strain, NS-1, was screened and isolated from agricultural and forestry wastes. Based on single-fac- tor experiments, the effects of different carbon sources, compo...In this study, a xylanase-produeing Aspergillus niger strain, NS-1, was screened and isolated from agricultural and forestry wastes. Based on single-fac- tor experiments, the effects of different carbon sources, composite carbon sources, nitrogen sources, calcium carbonate concentrations, initial pH and surfactants on xylanase production by A. niger NS-1 were investigated. The results indicated that the most appropriate carbon source was corncobs ; the best composite carbon source was corncobs + xylan, which was conducive to xylanase secretion; the most suitable nitrogen source was ammonium sulfate. Xylanase activity reached the highest in the medium added with 1.5% calcium carbonate and SDS as a surfactant with an initial pH of 5.0. This study provided the basis for the production of high-activity xylanase.展开更多
In order to solve the citrus peel resource waste problem protopectinase-overproducing strain CD-01 for pectin production and minimize the drawbacks of chemical extraction of pectin, a was isolated from a pit soil dump...In order to solve the citrus peel resource waste problem protopectinase-overproducing strain CD-01 for pectin production and minimize the drawbacks of chemical extraction of pectin, a was isolated from a pit soil dumped with perished orange in Changde City, Hunan Province of China. The strain CD-01 had the same morphology and 28S rRNA gene sequence (FJ184995) as that of Aspergillus niger (ATCC 64028). It was thus identified and named as Aspergillus niger CD-01. The fermentation condition was optimized based on L9(34) orthogonal experimental design and the variances analyses. The results show that the optimal condition for producing pectin is as follows: time 36 h, temperature 35 ℃, pH 5, and urea as the nitrogen source. Under this condition, the pectin yield can reach up to 24.5%. This shows a great potential of Aspergillus niger CD-01 in pectin extraction from citrus.展开更多
An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface ...An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface method-ology were applied to optimize the medium constituents. A central composite design was used to explain the combined effect of three medium constituents, viz, glucose, K2HPO4, MgSO47H2O. The strain produced more elastase in the completely optimized medium, as compared with the partially optimized medium. The fitted model of the second model, as per RSM, showed that glucose was 7.4 g/100 ml, casein 1.13 g/100 ml, corn steep flour 0.616 g/100 ml, K2HPO4 0.206 g/100 ml and MgSO47H2O 0.034 g/100 ml. The fermentation kinetics of these two culture media in the flask experiments were analyzed. It was found that the highest elastase productivity occurred at 54 hours. Higher glucose concentration had inhibitory effect on elastase production. At the same time, we observed that the glucose consumption rate was slow in the completely optimized medium, which can explain the lag period of the highest elastase production. Some metal ions and surfactant additives also affected elastase production and cell growth.展开更多
A strain isolated from the fruiting body of a fungus parasitized on Elaphomyces was identified as Cordyceps ophioglossoides based on the morphological characteristics and the analysis of ITS-5.8s rDNA sequence. The op...A strain isolated from the fruiting body of a fungus parasitized on Elaphomyces was identified as Cordyceps ophioglossoides based on the morphological characteristics and the analysis of ITS-5.8s rDNA sequence. The optimal medium, composition (g·L^-1), containing sucrose 66.0, yeast powder 10.0, silkworm chrysalises digest 30.0, MgSO4· 7H2O 0.4, and KH2PO4 0.4, Was found using fractional factorial design ancl a central composite design, and the optimization of cultural conditions obtained a result of seed age 6 days, inoculum size 6% (by volume), initial pH 5.6, temperature 24℃, shaking speed 160 ·'min^-1 by one-factor-at-a-time method. The maximum biomass reached about 20.2 g·L^-1 after 90 hours culture under the optimal conditions. Elementary nharmaeclogical actlwtties showed that mycelia of C. ophioglossoides L2 from submerged culture promoted Uterus growth in estrogen- depleted mice. In the 15-litre scale-up fermentation, the mycelial biomass was around 19.1 g·L^-1, indicating a promising prospect for this biotechnoloagy and the potency to develoo its medical value.展开更多
Chinese rice wine making is a typical simultaneous saccharification and fermentation (SSF) process. During the fermentation process, temperature is one of the key parameters which decide the quality of Chinese rice ...Chinese rice wine making is a typical simultaneous saccharification and fermentation (SSF) process. During the fermentation process, temperature is one of the key parameters which decide the quality of Chinese rice wine. To optimize the SSF process for Chinese rice wine brewing, the effects of temperature on the kinetic parameters of yeast growth and ethanol production at various temperatures were determined in batch cultures using a mathematical model. The kinetic parameters as a function of temperature were evaluated using the software Origin8.0. Combing these functions with the mathematical model, an appropriate form of the model equations for the SSF considering the effects of temperature were developed. The kinetic parameters were found to fit the experimental data satisfactorily with the developed temperature-dependent model. The temperature profile for maximizing the ethanol production for rice wine fermentation was determined by genetic algorithm. The optimum temperature profile began at a low temperature of 26℃ up to 30 h. The operating temperature increased rapidly to 31.9 ℃, and then decreased slowly to 18℃ at 65 h. Thereafter, the temperature was maintained at 18 ℃ until the end of fermentation. A maximum ethanol production of 89.3 g.L 1 was attained. Conceivably, our model would facilitate the improvement of Chinese rice wine production at the industrial scale.展开更多
Hyaluronic acid (HA) is a high molecular weight glycosaminoglycan consisting of alternating D-glucuronic acid and N-acetylglueasamine and plays ex- tremely important roles in many biological processes. In this study...Hyaluronic acid (HA) is a high molecular weight glycosaminoglycan consisting of alternating D-glucuronic acid and N-acetylglueasamine and plays ex- tremely important roles in many biological processes. In this study, we optimized fermentation process for the production of HA by Streptococcus zooepidemicus ATCC35246, including fermentation broth composition and various fermentation parameters. The experimental results showed that the optimal fermentation broth composition was: glucose 45 g/L, yeast extract 10 g/L, tryptone 12 g/L, KH2PO4 2 g/L, K2HPO4 . 3H20 2 g/L, MgSO4 · 7H2O 2 g/L, and (NH4 )2SO4 0.4 g/L. The optimal parameters involved in fermentation was: liquid volume 20%, pH 6. 0, rotation speed 180 r/min, fermentation temperature 35 ℃, fermentation duration 18 h, CTAB concentration 25 mg/L. Under the optimized conditions, the yield of HA was 0. 305 g/L, which was dramatically improved by 43.87% compared to that of 0. 212 g/L before optimization.展开更多
Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fix...Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.展开更多
The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was follow...The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was followed to determine and optimize fermentation conditions for the maximum production of 1,3-PDO using marine-derived Klebsiella pneumoniae HSL4. Four nutritional supplements together with three independent culture conditions were optimized as follows: 29.3 g/L glycerol, 8.0 g/L K2HPO4, 7.6 g/L (NH4)2SO4, 3.0 g/L KH2PO4, pH 7.1, cultivation at 35℃ for 12 h. Under the optimal conditions, a maximum 1,3-PDO concentration of 14.5 g/L, a productivity of 1.21 g/(L'h) and a conversion of glycerol of 0.49 g/g were obtained. In comparison with the control conditions, fermentation under the optimized conditions achieved an increase of 38.8% in 1,3-PDO concentration, 39.0% in productivity and 25.7% in glycerol conversion in flask. This enhancement trend was further confirmed when the fermentation was conducted in a 5-L fermentor. The optimized fermentation conditions could be an important basis for developing low- cost, large-scale methods for industrial production of 1,3-PDO in the future.展开更多
[Objective]This study aimed to improve the yield of bacteriocins from lactic acid bacteria by optimizing the fermentation process for production of bacteriocins from lactic acid bacteria.[Method]By single-factor analy...[Objective]This study aimed to improve the yield of bacteriocins from lactic acid bacteria by optimizing the fermentation process for production of bacteriocins from lactic acid bacteria.[Method]By single-factor analysis,fermentation temperature,seed age,inoculation volume,fermentation duration and fermentation media p H were optimized to determine the best fermentation process.The inhibitory zone of bacteriocins from lactic acid bacteria was analyzed with oxford cup method,based on which the fermentation process was evaluated.[Result]The optimal fermentation process was optimized:fermentation temperature 37℃,seed age 14 h,inoculation volume 2%,fermentation duration 48 h,fermentation media p H 5.0.[Conclusion]Under the optimized fermentation conditions,the yield of bacteriocins from lactic acid bacteria was improved significantly.展开更多
[ Objective] The paper wag to improve the antimicrobial effect of antagonistic Streptomyces on Botryosphaeria dothidea. [ Method ] Different concentrations of DES were adopted for mutagenic treatment of antagonistic S...[ Objective] The paper wag to improve the antimicrobial effect of antagonistic Streptomyces on Botryosphaeria dothidea. [ Method ] Different concentrations of DES were adopted for mutagenic treatment of antagonistic Streptomyces F-58. After fermentation, the mutant strain numbered F-58-06 with genetic stability and good antimicrobial effect was selected among 200 mutant strains; the biological activity of the strain was determined with B. dothidea as the indicator fungus, and the best concentration of DES wag 2%. The fermentation conditions of antagonistic substances of Streptomyces strain F-58-06 produced in shake flasks were opti- mized using the method of single factor and orthogonal experimental design. [ Result] The optimal fermentation conditions were carbon source corn flour, nitrogen source KNO3, initial pH 7, loading volume 30 mL in 250 mL shake flask, inoculation volume 3%, incubation time 132 h. Based on orthogonal experiments, the best cultured medium ratio was corn flour 4%, KNO3 0.5%, CaCO3 0.2%, NaCI 0.35%, MgSO4 · 7H2O 0. 15%. [ Conclusion ] After mutation and optimization of culture medium, the antimicrobial activity of Streptomyces F-58 was greatly improved, and the average inhibition zone diameter was 1.35 times of that of the original strain.展开更多
A new procedure of determining optimal C/N (the rate of carbon source to nitrogen source) of mixed distillers' grains for combined bacteria synergic fermentation is established. At the same time an improved method...A new procedure of determining optimal C/N (the rate of carbon source to nitrogen source) of mixed distillers' grains for combined bacteria synergic fermentation is established. At the same time an improved method evaluating bacteria growth, called method of dry cell weighing by filtering is developed. For each combination of C and N, their initial and residual contents before and after fermentation respectively are determined. Then followed the calculation of utilization of C and N sources by the compound bacteria. The optimal C/N is finally located from among the utilization of C and N of several combinations and the weight of produced mass of oven dried thallus. The conditions of fermentation are: inoculum size 10%, temperature 30 0℃, rotational speed 170 r/min, shake culture time 48h. The best results obtained from orthogonal experiments are: maximum mass of oven dried thallus is 14 693g in a liter liquid medium, maximum utilization rate of carbon source is 98 13% and maximum utilization rate of nitrogen is 78 14%. Optimal C/N is 5 1.展开更多
Hexanoic acid (HX) is a crucial flavor compound and precursor of ethyl caproate (EA), which determines the quality of Chinese Luzhou-flavor liquor (CLFL). The isolation, purification, identification, and optimization ...Hexanoic acid (HX) is a crucial flavor compound and precursor of ethyl caproate (EA), which determines the quality of Chinese Luzhou-flavor liquor (CLFL). The isolation, purification, identification, and optimization of fermentation conditions of HX-producing bacteria are essential for industrial CLFL production. In this study, one strain of HX-producing bacterium was isolated from six candidate bacterial strains and identified as Clostridium sartagoneforme. Then, the growth characteristics and HX production of C. sartagoneforme were investigated. Sodium acetate medium was identified as the optimal fermentation medium from four candidate media. C. sartagoneforme yielded 800.85 ± 12.87 mg/100mL HX in sodium acetate medium. Then, to further optimize the formula of the fermentation medium, the carbon and nitrogen sources and inorganic salt component of the fermentation medium were investigated using HX yields as an optimization index. Optimization was performed with a single-factor experiment and the Taguchi design method. The single-factor experiment showed that the highest HX outputs were obtained when the sodium acetate medium contained 2.5 g/L yeast extract, 1.8 g/L KCl, 20 g/L sodium acetate, 15 mL/L ethanol, and 1.5 g/L glucose. In the orthogonal experiment designed using the Taguchi design method, HX yields reached 2018.29 ± 46.37 mg/100mL in sodium acetate medium that contained 3.5 g/L yeast extract, 1.8 g/L KCl, 25 g/L sodium acetate, and 15 mL/L ethanol.展开更多
The effects of process variables in Simultaneous Saccharification and Fermentation (SSF) of wheat bran flour were studied in bulk fermentation using a coculture of Aspergillus niger - Kluveromyces marxianus. The effec...The effects of process variables in Simultaneous Saccharification and Fermentation (SSF) of wheat bran flour were studied in bulk fermentation using a coculture of Aspergillus niger - Kluveromyces marxianus. The effect of substrate density, pH, temperature, and enzyme concentration on wheat bran was predicted by designing experiments in which a single parameter is varied keeping other variables at a constant level. The above parameters were optimized for a batch culture in a fermentor. Optimal values for substrate concentration, pH, temperature, and enzyme concentration during processing were 200 g/l, 5.5, 65°C, and 7.5 IU, respectively. In pre-treatment experiments, the concentration of enzymes and the pre-treatment temperature are highly correlated. The influence of pH, temperature, and substrate density on ethanol production was investigated. Temperature pH was determined as optimal, 32°C and 5.5, respectively. After 48 hours of fermentation at optimum pH, a solution of wheat bran containing a maximum of 6% starch produces a maximum of 22.9 g/l ethanol.展开更多
基金Supported by the Project Funded by Biotechnology Key Laboratory of Fermentation and Brewing Engineering of State Ethnic Affairs Commission (2008SY011)~~
文摘[Objective] The aim was to optimize the fermentation conditions of acid resistant α-amylase producing strain. [Method] Based on the selection of an acid resistant α-amylase producing strain,the fermentation conditions including C,N contents and initial pH of culture medium,seed age,inoculum size,rotation speed of shake flask and fermentation temperature were optimized. [Result] The optimum fermentation conditions for acid resistant α-amylase producing strain were:seed age 14 h,inoculum size 8%,initial pH 5.5,fermentation temperature 35 ℃,rotation speed 150 r/min,the volume of inoculum broth 25 ml,C content 1.0% and N content 0.5%. [Conclusion] Under the optimum fermentation conditions,α-amylase activity reached 31.4 U/ml,which was 65.3 % higher than that before optimization.
基金Supported by the Public Research and Capacity Building Program of Guangdong Province(2014B020204005)the Higher Educational Cultivation Program for Major Scientific Research Projects of Guangdong Ocean University(2013050205,2014050203,2013050312)~~
文摘Solid-state fermentation has certain advantages in improving the yield of lipopetide, Box-Behnken Design(BBD) was adopted to optimize the producing condition of the antibacterial lipopetide produced by Bacillus natto in this article. The optimal solid state fermentation conditions were obtained: 10 g solid medium(7 g of wheat bran, 3 g of soybean meal) with appropriate inorganic salt(glucose 0.67%,sodium glutamate 0.64%,(NH4)2SO40.15%, K2HPO40.10%); moisture content 123.78%; inoculation amount 10%; cultivation temperature 36.75 ℃ and cultivation time 72.4 h. The maximum production of lipopetide is 61.76 mg/gds under such conditions. This is the first report on the optimization of lipopeptide fermentation conditions in solid-state fermentation by wheat bran and soybean meal with Bacillus natto NT-6 strain, and will contribute to the development of lipopetide production.
基金Supported by National Department Public Benefit Marine Scientific Research Foundation(201005032-2)National High Technology Research and Development Program of China(2007AA091905)~~
文摘[Objective] The aim was to optimize the fermentation medium and conditions of antibiotic active substances produced by Antarctic psychrotrophic bacterium Rheinheimera sp.97.[Method] Single-factor experiment and orthogonal test were adopted to optimize the fermentation medium of antibiotic active substances produced by Antarctic psychrotrophic bacterium R.sp.97,while the fermentation conditions were optimized by single-factor experiment.[Result] The optimum fermentation medium for the antibiotic active substances production was as follows:tryptone 3.0 g/L,ammonium sulfate 1.0 g/L,starch 2.0 g/L,NaCl 15.0 g/L.The optimized fermentation conditions were as follows:the starting pH of medium was 8.0,fermentation temperature was 10 ℃,liquid volume in Erlenmeyer flask was 30 %(V/V)and inoculation amount was 1%(V/V).Under the optimized fermentation medium and conditions,the antibacterial activity of R.sp.97 was increased by 18.1%.[Conclusion] This study had provided basis for the antibiotic active substances produced by Antarctic psychrotrophic bacterium R.sp.97.
基金Supported by the Science Technology Development Project of Jilin Province,China(No.20020503-2)
文摘A sequential statistical approach was applied to optimizing the fermentation medium of epothilones(Epos) production by means of a mutant which was obtained by treating polyangium cellulosum ATCC 15384 with nitrite and ultraviolet. The effects of different carbon sources and nitrogen sources on the fermentation medium were tested, and the suitable ones were selected. Then a uniform design was employed to design the experiments. A linear model was developed for identifying the significant components in fermentation medium, while a third degree polynomial model was used for studying the relationship between the concentration of the components in fermentation medium and the yield of Epos(YEPs). A pattern search method was used for searching the optimum fermentation medium in the test space, which was as follows(g/L): potassium nitrate 8.00, soybean peptone 17.60, potassium hydrogen phos- phate 1.00, beef extraction 6.46, yeast extraction 1.00, calcium chloride 0.25, sodium chloride 1.00 and ferric chloride 0.02. The optimum fermentation medium was expected to result in a yield of Epos(YEPs) of 2.48 mg/L. The validation experiments with the optimum medium were performed in triplicate and the average yield of Epos was 2.45 mg/L which was 7.78 times higher than that of Epos prepared without optimization.
文摘Response surface methodology (RSM) was used to optimize the fermentation medium for enhancing pyruvic acid production by Torulopsis glabrata TP19. In the first step of optimization, with Plackett-Burman design, ammonium sulfate, glucose and nicotinic acid were found to be the important factors affecting pyruvic acid production significantly. In the second step, a 23 full factorial central composite design and RSM were applied to determine the optimal concentration of each significant variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the critical components were obtained as follows: ammonium sulfate 0.7498 (10.75 g/L), glucose 0.9383 (109.38 g/L) and nicotinic acid 0.3633 (7.86 mg/L) with a predicted value of maximum pyruvic acid production of 42.2 g/L. Under the optimal conditions, the practical pyruvic acid production was 42.4 g/L. The determination coefficient (R2) was 0.9483, which ensures adequate credibility of the model. By scaling up fermentation from flask to jar fermentor, we obtained promising results.
基金Supported by the National Natural Science Foundation of China(20776119) the National High Technology Research and Development Program of China(2007AA03Z456A) the Special Research Program of the Education Department of Shaanxi Province(07JK417)
文摘In order to improve the production of human-like collagen III(HLC III)by fed-batch culture of recombinant Escherichia coli BL21,the Plackett-Burman and Box-Behnken design were applied to optimize the fermentation process parameters.Three variables(induction time,inoculum age and pH),which have significant effects on HLC III production,were selected from eight variables by Plackett-Burman design.With the regression coefficient analysis in the Box-Behnken design,a relationship between HLC III production and three significant factors was obtained,and the optimum levels of the three variables were as follows:induction time 3.2h,inoculum age 12.6 h and pH 6.7.The 3D response surface plots and 2D contour plots created by the Box-Behnken design showed that the interaction between induction time and pH and that between innoculum age and pH were significant.An average 9.68 g·L1HLC III production was attained in the validation experiment under optimized condition,which was 80%higher than the yield of 5.36 g·L1before optimization.
基金Supported by the Natural Science Foundation of Fujian Province of China (E0810018)
文摘An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to improve very high gravity (VHG) ethanol fermentation, showing over 30% increase in final ethanol (from 13.1% to 17.1%, by volume), 29% decrease in fermentation time (from 84 to 60 h), 80% increase in biomass formation and 26% increase in glucose utilization. Experiments also revealed physiological aspects linked to the fermentation enhancements. Compared to the control, trehalose in the cells grown in optimal fermentation medium increased 17.9-, 2.8-, 1.9-, 1.8- and 1.9-fold at the fermentation time of 12, 24, 36, 48 and 60 h, respectively. Its sharp rise at the early stage of fermentation when there was a considerable osmotic stress suggested that trehalose played an important role in promoting fermentation. Meanwhile, at the identical five fermentation time, the plasma membrane ATPase activity of the cells grown in optimal medium was 2.3, 1.8, 1.6, 1.5 and 1.3 times that of the control, respectively. Their disparities in enzymatic activity became wider when the glucose levels were dramatically changed for ethanol production, suggesting this enzyme also contributed to the fermentation improvements. Thus, medium optimization for VHG ethanol fermentation was found to trigger the increased yeast trehalose accumulation and plasma membrane ATPase activity.
基金Supported by Project of Taizhou Science and Technology Bureau(TS019)
文摘In this study, a xylanase-produeing Aspergillus niger strain, NS-1, was screened and isolated from agricultural and forestry wastes. Based on single-fac- tor experiments, the effects of different carbon sources, composite carbon sources, nitrogen sources, calcium carbonate concentrations, initial pH and surfactants on xylanase production by A. niger NS-1 were investigated. The results indicated that the most appropriate carbon source was corncobs ; the best composite carbon source was corncobs + xylan, which was conducive to xylanase secretion; the most suitable nitrogen source was ammonium sulfate. Xylanase activity reached the highest in the medium added with 1.5% calcium carbonate and SDS as a surfactant with an initial pH of 5.0. This study provided the basis for the production of high-activity xylanase.
基金Projects(50621063, 50674101) supported by the National Natural Science Foundation of China
文摘In order to solve the citrus peel resource waste problem protopectinase-overproducing strain CD-01 for pectin production and minimize the drawbacks of chemical extraction of pectin, a was isolated from a pit soil dumped with perished orange in Changde City, Hunan Province of China. The strain CD-01 had the same morphology and 28S rRNA gene sequence (FJ184995) as that of Aspergillus niger (ATCC 64028). It was thus identified and named as Aspergillus niger CD-01. The fermentation condition was optimized based on L9(34) orthogonal experimental design and the variances analyses. The results show that the optimal condition for producing pectin is as follows: time 36 h, temperature 35 ℃, pH 5, and urea as the nitrogen source. Under this condition, the pectin yield can reach up to 24.5%. This shows a great potential of Aspergillus niger CD-01 in pectin extraction from citrus.
文摘An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface method-ology were applied to optimize the medium constituents. A central composite design was used to explain the combined effect of three medium constituents, viz, glucose, K2HPO4, MgSO47H2O. The strain produced more elastase in the completely optimized medium, as compared with the partially optimized medium. The fitted model of the second model, as per RSM, showed that glucose was 7.4 g/100 ml, casein 1.13 g/100 ml, corn steep flour 0.616 g/100 ml, K2HPO4 0.206 g/100 ml and MgSO47H2O 0.034 g/100 ml. The fermentation kinetics of these two culture media in the flask experiments were analyzed. It was found that the highest elastase productivity occurred at 54 hours. Higher glucose concentration had inhibitory effect on elastase production. At the same time, we observed that the glucose consumption rate was slow in the completely optimized medium, which can explain the lag period of the highest elastase production. Some metal ions and surfactant additives also affected elastase production and cell growth.
基金Supported by the Research Project of Science and Technology of Zhejiang Province, China (2005C23027), the National High Technology Research and Development Program of China (2007AA021506) and the Natural Science Foundation of Zhejiang Province (R207609). We would like to thank Dr. Birnie from New Zealand for his editing of this manuscript.
文摘A strain isolated from the fruiting body of a fungus parasitized on Elaphomyces was identified as Cordyceps ophioglossoides based on the morphological characteristics and the analysis of ITS-5.8s rDNA sequence. The optimal medium, composition (g·L^-1), containing sucrose 66.0, yeast powder 10.0, silkworm chrysalises digest 30.0, MgSO4· 7H2O 0.4, and KH2PO4 0.4, Was found using fractional factorial design ancl a central composite design, and the optimization of cultural conditions obtained a result of seed age 6 days, inoculum size 6% (by volume), initial pH 5.6, temperature 24℃, shaking speed 160 ·'min^-1 by one-factor-at-a-time method. The maximum biomass reached about 20.2 g·L^-1 after 90 hours culture under the optimal conditions. Elementary nharmaeclogical actlwtties showed that mycelia of C. ophioglossoides L2 from submerged culture promoted Uterus growth in estrogen- depleted mice. In the 15-litre scale-up fermentation, the mycelial biomass was around 19.1 g·L^-1, indicating a promising prospect for this biotechnoloagy and the potency to develoo its medical value.
基金Supported by the National Natural Science Foundation of China(21276111,21206053,61305017)the Programme of Introducing Talents of Discipline to Universities(B12018)+2 种基金Fundamental Research Funds for the Central Universities(JUSRP11558)the Natural Science Foundation of Jiangsu Province(no.BK20160162)the Fundamental Research Funds for the Central Universities(JUSRP51510)
文摘Chinese rice wine making is a typical simultaneous saccharification and fermentation (SSF) process. During the fermentation process, temperature is one of the key parameters which decide the quality of Chinese rice wine. To optimize the SSF process for Chinese rice wine brewing, the effects of temperature on the kinetic parameters of yeast growth and ethanol production at various temperatures were determined in batch cultures using a mathematical model. The kinetic parameters as a function of temperature were evaluated using the software Origin8.0. Combing these functions with the mathematical model, an appropriate form of the model equations for the SSF considering the effects of temperature were developed. The kinetic parameters were found to fit the experimental data satisfactorily with the developed temperature-dependent model. The temperature profile for maximizing the ethanol production for rice wine fermentation was determined by genetic algorithm. The optimum temperature profile began at a low temperature of 26℃ up to 30 h. The operating temperature increased rapidly to 31.9 ℃, and then decreased slowly to 18℃ at 65 h. Thereafter, the temperature was maintained at 18 ℃ until the end of fermentation. A maximum ethanol production of 89.3 g.L 1 was attained. Conceivably, our model would facilitate the improvement of Chinese rice wine production at the industrial scale.
基金Supported by Scientific Research Fund of Sichuan University of Science&Engineering(2011RC12,2014KY02)Scientific Research Foundation of the Education Department of Sichuan Province(15ZA0222)+1 种基金Research Project of Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province(NJ2013-06)Sichuan Provincial Undergraduate Training Programs for Innovation and Entrepreneurship(201410622021)
文摘Hyaluronic acid (HA) is a high molecular weight glycosaminoglycan consisting of alternating D-glucuronic acid and N-acetylglueasamine and plays ex- tremely important roles in many biological processes. In this study, we optimized fermentation process for the production of HA by Streptococcus zooepidemicus ATCC35246, including fermentation broth composition and various fermentation parameters. The experimental results showed that the optimal fermentation broth composition was: glucose 45 g/L, yeast extract 10 g/L, tryptone 12 g/L, KH2PO4 2 g/L, K2HPO4 . 3H20 2 g/L, MgSO4 · 7H2O 2 g/L, and (NH4 )2SO4 0.4 g/L. The optimal parameters involved in fermentation was: liquid volume 20%, pH 6. 0, rotation speed 180 r/min, fermentation temperature 35 ℃, fermentation duration 18 h, CTAB concentration 25 mg/L. Under the optimized conditions, the yield of HA was 0. 305 g/L, which was dramatically improved by 43.87% compared to that of 0. 212 g/L before optimization.
文摘Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.
基金Supported by the Scientific Research Project of Marine Public Welfare Industry of China(No.201205020-4)the Knowledge Innovation Project of Chinese Academy of Sciences(No.KSCX2-EW-G-12B)the Administration of Ocean and Fisheries of Guangdong Province(No.GD2012-D01-002)
文摘The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was followed to determine and optimize fermentation conditions for the maximum production of 1,3-PDO using marine-derived Klebsiella pneumoniae HSL4. Four nutritional supplements together with three independent culture conditions were optimized as follows: 29.3 g/L glycerol, 8.0 g/L K2HPO4, 7.6 g/L (NH4)2SO4, 3.0 g/L KH2PO4, pH 7.1, cultivation at 35℃ for 12 h. Under the optimal conditions, a maximum 1,3-PDO concentration of 14.5 g/L, a productivity of 1.21 g/(L'h) and a conversion of glycerol of 0.49 g/g were obtained. In comparison with the control conditions, fermentation under the optimized conditions achieved an increase of 38.8% in 1,3-PDO concentration, 39.0% in productivity and 25.7% in glycerol conversion in flask. This enhancement trend was further confirmed when the fermentation was conducted in a 5-L fermentor. The optimized fermentation conditions could be an important basis for developing low- cost, large-scale methods for industrial production of 1,3-PDO in the future.
基金Supported by Research Project of Sichuan University of Science&Engineering(No.2011RC12,2014KY02)Scientific Research Foundation of the Education Department of Sichuan Province(No.15ZA0222)Research Project of Liquor-marking Biological Technology and Application of Key Laboratory of Sichuan Province(NJ2013-06)
文摘[Objective]This study aimed to improve the yield of bacteriocins from lactic acid bacteria by optimizing the fermentation process for production of bacteriocins from lactic acid bacteria.[Method]By single-factor analysis,fermentation temperature,seed age,inoculation volume,fermentation duration and fermentation media p H were optimized to determine the best fermentation process.The inhibitory zone of bacteriocins from lactic acid bacteria was analyzed with oxford cup method,based on which the fermentation process was evaluated.[Result]The optimal fermentation process was optimized:fermentation temperature 37℃,seed age 14 h,inoculation volume 2%,fermentation duration 48 h,fermentation media p H 5.0.[Conclusion]Under the optimized fermentation conditions,the yield of bacteriocins from lactic acid bacteria was improved significantly.
基金Supported by Special Fund for Forestry Scientific Research in the Public Welfare(201204501)Key Theoretical Basis for Prevention and Control Technology of Forest Diseases and Pests & Key Science and Technology Project of Jilin Province(20110267)+1 种基金Research of New Antibiotics for Poplar Diseases & Science and Technology Research Plan of Forestry Department of Jilin Province(2014-004)Development of Forestry Microbial Agents & Key Projects for Science and Technology in Jilin Province(20150203015NY):Monitoring and Control Technology of Major Pests and Diseases in Industrial Forest
文摘[ Objective] The paper wag to improve the antimicrobial effect of antagonistic Streptomyces on Botryosphaeria dothidea. [ Method ] Different concentrations of DES were adopted for mutagenic treatment of antagonistic Streptomyces F-58. After fermentation, the mutant strain numbered F-58-06 with genetic stability and good antimicrobial effect was selected among 200 mutant strains; the biological activity of the strain was determined with B. dothidea as the indicator fungus, and the best concentration of DES wag 2%. The fermentation conditions of antagonistic substances of Streptomyces strain F-58-06 produced in shake flasks were opti- mized using the method of single factor and orthogonal experimental design. [ Result] The optimal fermentation conditions were carbon source corn flour, nitrogen source KNO3, initial pH 7, loading volume 30 mL in 250 mL shake flask, inoculation volume 3%, incubation time 132 h. Based on orthogonal experiments, the best cultured medium ratio was corn flour 4%, KNO3 0.5%, CaCO3 0.2%, NaCI 0.35%, MgSO4 · 7H2O 0. 15%. [ Conclusion ] After mutation and optimization of culture medium, the antimicrobial activity of Streptomyces F-58 was greatly improved, and the average inhibition zone diameter was 1.35 times of that of the original strain.
文摘A new procedure of determining optimal C/N (the rate of carbon source to nitrogen source) of mixed distillers' grains for combined bacteria synergic fermentation is established. At the same time an improved method evaluating bacteria growth, called method of dry cell weighing by filtering is developed. For each combination of C and N, their initial and residual contents before and after fermentation respectively are determined. Then followed the calculation of utilization of C and N sources by the compound bacteria. The optimal C/N is finally located from among the utilization of C and N of several combinations and the weight of produced mass of oven dried thallus. The conditions of fermentation are: inoculum size 10%, temperature 30 0℃, rotational speed 170 r/min, shake culture time 48h. The best results obtained from orthogonal experiments are: maximum mass of oven dried thallus is 14 693g in a liter liquid medium, maximum utilization rate of carbon source is 98 13% and maximum utilization rate of nitrogen is 78 14%. Optimal C/N is 5 1.
文摘Hexanoic acid (HX) is a crucial flavor compound and precursor of ethyl caproate (EA), which determines the quality of Chinese Luzhou-flavor liquor (CLFL). The isolation, purification, identification, and optimization of fermentation conditions of HX-producing bacteria are essential for industrial CLFL production. In this study, one strain of HX-producing bacterium was isolated from six candidate bacterial strains and identified as Clostridium sartagoneforme. Then, the growth characteristics and HX production of C. sartagoneforme were investigated. Sodium acetate medium was identified as the optimal fermentation medium from four candidate media. C. sartagoneforme yielded 800.85 ± 12.87 mg/100mL HX in sodium acetate medium. Then, to further optimize the formula of the fermentation medium, the carbon and nitrogen sources and inorganic salt component of the fermentation medium were investigated using HX yields as an optimization index. Optimization was performed with a single-factor experiment and the Taguchi design method. The single-factor experiment showed that the highest HX outputs were obtained when the sodium acetate medium contained 2.5 g/L yeast extract, 1.8 g/L KCl, 20 g/L sodium acetate, 15 mL/L ethanol, and 1.5 g/L glucose. In the orthogonal experiment designed using the Taguchi design method, HX yields reached 2018.29 ± 46.37 mg/100mL in sodium acetate medium that contained 3.5 g/L yeast extract, 1.8 g/L KCl, 25 g/L sodium acetate, and 15 mL/L ethanol.
文摘The effects of process variables in Simultaneous Saccharification and Fermentation (SSF) of wheat bran flour were studied in bulk fermentation using a coculture of Aspergillus niger - Kluveromyces marxianus. The effect of substrate density, pH, temperature, and enzyme concentration on wheat bran was predicted by designing experiments in which a single parameter is varied keeping other variables at a constant level. The above parameters were optimized for a batch culture in a fermentor. Optimal values for substrate concentration, pH, temperature, and enzyme concentration during processing were 200 g/l, 5.5, 65°C, and 7.5 IU, respectively. In pre-treatment experiments, the concentration of enzymes and the pre-treatment temperature are highly correlated. The influence of pH, temperature, and substrate density on ethanol production was investigated. Temperature pH was determined as optimal, 32°C and 5.5, respectively. After 48 hours of fermentation at optimum pH, a solution of wheat bran containing a maximum of 6% starch produces a maximum of 22.9 g/l ethanol.