The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation proce...The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression(GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes.展开更多
Penicillin fermentation is an important part of microbial fermentation. Due to the existence of error date in the independent variables and dependent variables of the penicillin fermentation sample data, the accuracy ...Penicillin fermentation is an important part of microbial fermentation. Due to the existence of error date in the independent variables and dependent variables of the penicillin fermentation sample data, the accuracy of the model of penicillin fermentation is affected. In this paper, an amended harmony search (AHS) algorithm is developed to adjust the hyper-parameters of least squares support vector machine (LS-SVM) in order to build penicillin fermentation process model with prediction accuracy. The AHS algorithm is investigated by unconstrained benchmark functions with different characteristics. Compared with other several optimization approaches, AHS demonstrates a better performance. Moreover, using the simulation data from the PenSim simulation platform to validate the effectiveness of the penicillin fermentation process modeling, experiment results show that the penicillin fermentation process modeling based on the tuned LS-SVM by AHS possesses robustness and generalization ability.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province of China(BK20130531)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD[2011]6)Jiangsu Government Scholarship
文摘The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression(GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes.
基金The authors wish to thank the editor and anonymous referees for their constructive comments and recommendations, which have significantly improved the presentation of this paper. This work is supported by National Nature Science Foundation of China (Grant Nos. 60674021, 61273155).
文摘Penicillin fermentation is an important part of microbial fermentation. Due to the existence of error date in the independent variables and dependent variables of the penicillin fermentation sample data, the accuracy of the model of penicillin fermentation is affected. In this paper, an amended harmony search (AHS) algorithm is developed to adjust the hyper-parameters of least squares support vector machine (LS-SVM) in order to build penicillin fermentation process model with prediction accuracy. The AHS algorithm is investigated by unconstrained benchmark functions with different characteristics. Compared with other several optimization approaches, AHS demonstrates a better performance. Moreover, using the simulation data from the PenSim simulation platform to validate the effectiveness of the penicillin fermentation process modeling, experiment results show that the penicillin fermentation process modeling based on the tuned LS-SVM by AHS possesses robustness and generalization ability.