期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Partial Characteristics of Hydrogen Production by Fermentative Hydrogen-producing Bacterial Strain B49 被引量:5
1
作者 王相晶 Ren Nanqi +2 位作者 Xiang Wensheng Lin Ming Guo Wanqian 《High Technology Letters》 EI CAS 2003年第3期65-70,共6页
To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen produc... To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen production has a correlation with cell growth and the consumption of glucose and soluble protein. The optimum pH for cell growth is 4.5±0.15. At acidic pH 4.0±0.15, the bacteria has the maximum accumulated hydrogen volume of 2382 ml/L culture and the maximum hydrogen evolution rate of 339.9 ml/L culture·h with 1% glucose. The optimum temperature for cell growth and hydrogen production is 35℃. In addition, fermentative hydrogen-producing bacterial strain B49 can generate hydrogen from the decomposition of other organic substrates such as wheat, soybean, corn, and potato. Moreover, it can also produce hydrogen from molasses wastewater and brewage wastewater, and hydrogen yields are 137.9 ml H 2/g COD and 49.9 ml H 2/g COD, respectively. 展开更多
关键词 hydrogen production hydrogen-producing bacterial strain b49 CHARACTERISTICS
下载PDF
Magnesium improves hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 被引量:1
2
作者 王相晶 任南琪 向文胜 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第2期164-168,共5页
Batch experiments were conducted to investigate the effects of magnesium on glucose metabolism, including growth and hydrogen-producing capacity of fermentative hydrogen-producing bacterial strain B49. These abilities... Batch experiments were conducted to investigate the effects of magnesium on glucose metabolism, including growth and hydrogen-producing capacity of fermentative hydrogen-producing bacterial strain B49. These abilities were enhanced with an increase in magnesium concentration. At the end of fermentation from (10 g/L) glucose, for 10 mg/L MgCl2·6H2O the cell growth in terms of optical density (OD) at 600nm was 0.46, the ratio of ethanol amount (mg/L) to acetate amount (mg/L) was 1.1, and the accumulated hydrogen volume was 934.9 mL H2/L culture; for 200 mg/L of MgCl2·6H2O OD600 nm was increased to 1.34. The accumulated hydrogen volume was increased to 2 360.5 mL H2/L culture, the ratio of ethanol amount (mg/L) to acetate amount (mg/L) was increased to 1.3 and polysaccharide was decreased to 2.5 mg/L. Moreover, the magnesium solution addition to the medium at different fermentation times affected hydrogen-producing ability. However, the later the addition time was postponed, the less the effect was on hydrogen evolution. Further experiments confirmed the enhancement was dependent on magnesium ions and not on the other inorganic ions such as SO42- or Cl-, which constituted the magnesium salts. 展开更多
关键词 hydrogen-producing bacterial strain b49 MAGNESIUM GROWTH hydrogen production
下载PDF
The start-up of biohydrogen-producing process by bioaugmentation in the EGSB reactor 被引量:5
3
作者 王相晶 Ren Nanqi +1 位作者 Xiang Wensheng Guo Wanqian 《High Technology Letters》 EI CAS 2006年第3期328-332,共5页
Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 ... Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 - 24d) seeded with activated sludge, the butyric acid type-fermentation formed when the initial expanding rate, organic loading rate (OLR), the initial redox potential (ORP) and hydraulic retention time (HRT) were 10%, 10.0 kg COD/(m^3·d), -215 mV and 6.7 h, respectively. At the beginning of the second stage on day 25, the novel hydrogen-producing fermentative bacterial strain B49 (AF481148 in EMBL) were inoculated into the reactor under the condition of OLR 16. 0 kg COD/(m^3·d), ORP and HRT about - 139 mV and 6.7 h, respectively, and then the reaction system transformed to ethanol-type fermentation gradually with the increase in OLR. When OLR, ORP and HRT were about 94.3 kg COD/(m^3·d), -250 mV and 1.7 h, respectively, the system achieved the maximum hydrogen-producing rate of 282.6 mL H2/L reactor·h and hydrogen percentage of 51% -53% in the biogas. 展开更多
关键词 START-UP biohydrogen production bIOAUGMENTATION hydrogen-producing bacterial strain b49 EGSb reactor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部