A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of ...A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of SWCNTs,as confirmed by X-ray diffraction(XRD),transmission electron microscope(TEM) and energy dispersive X-ray spectroscopy(EDX).Due to the synergistic effect of different components,the as synthesized SnO2-Fe2O3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g-1 which could be maintained after 50 cycles at 200 mA·g-1.Even at a high rate of2000 mA·g-1,the capacity was still remained at 656 mAh·g-1.展开更多
In the production process of titanium dioxide with sulfuric acid, the contamination of the titanium sulfate solution (the ilmenite leaching solution) in the Fe 3+ reduction stage by iron scraps is a practical problem ...In the production process of titanium dioxide with sulfuric acid, the contamination of the titanium sulfate solution (the ilmenite leaching solution) in the Fe 3+ reduction stage by iron scraps is a practical problem because it is difficult to guarantee the quality of the iron scraps. In this research, a new method, called the ion exchange membrane primary cell method, for reduction of Fe 3+ in the titanium sulfate solution has been advanced. The positive compartment of the primary cell consists of lead (copper) electrode and the titanium sulfate solution, and the negative compartment consists of iron electrode and acidic FeSO 4 solution. The anion ion exchange membrane is used as the diaphragm between two compartments. Fe 3+ in the titanium sulfate solution is reduced by the electric discharge of the primary cell. The effects of temperature, stirring strength of the solution and membrane area on the reduction rate have been investigated. The experimental result shows that the optimum current density can be higher than 100 A/m 2.展开更多
Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)s...Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)spheres,used as anode material for lithium ion batteries,were successfully fabricated by Stober method.XRD patterns reveal that Fe3O4@TiO2@C Y-S spheres possess a good crystallinity.But the diffraction peaks’intensity of Fe3O4 crystals in the composites is much weaker than that of bare Fe3O4 spheres,indicating that the outer anatase TiO2@C layer can cover up the diffraction peaks of inner Fe3O4 spheres.The yolk-shell structure of Fe3O4@TiO2@C spheres is further characterized by TEM,HAADFSTEM,and EDS mapping.The yolk-shell structure is good for improving the cycling stability of the inner Fe3O4 spheres during lithium ions insertion-extraction processes.When tested at 200 mA/g,the Fe3O4@TiO2@C Y-S spheres can provide a stable discharge capacity of 450 mAh/g over 100 cycles,which is much better than that of bare Fe3O4 spheres and TiO2@C spheres.Furthermore,cyclic voltammetry curves show that the composites have a good cycling stability compared to bare Fe3O4 spheres.展开更多
Single-crystal Fe_3 O_4 with monodisperse microspheres structure has been used for individual electrochemical detection of heavy metal ions. Morphology and structure of the as-prepared Fe_3 O_4 microspheres were chara...Single-crystal Fe_3 O_4 with monodisperse microspheres structure has been used for individual electrochemical detection of heavy metal ions. Morphology and structure of the as-prepared Fe_3 O_4 microspheres were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffraction(XRD). Meanwhile the electrochemical properties of the Fe_3 O_4 microspheres modified glass carbon electrodes(GCE) were characterized by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS), and the enhanced electrochemical response in stripping voltammetry for individual detection of Pb(Ⅱ), Hg(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) was evaluated using square wave anodic stripping voltammetry(SWASV). With high specific surface area and excellent catalytic activity toward heavy metal ions, the as-prepared monodisperse and single-crystal Fe_3 O_4 microspheres show a preferable sensing sensitivity(22.2 μA/μM) and limit of detection(0.0699 μM) toward Pb(Ⅱ). Furthermore, the electrochemical sensor of Fe_3 O_4 microspheres exhibits excellent stability and it also offers potential practical applicability for the determination of heavy metal ions in real water samples. This study provides a potential simple and low cost iron oxide for the construction of sensitive electrochemical sensors applied to monitor and control the pollution of toxic metal ions.展开更多
During the process of KDP crystal growth, metal ions strongly affect the growth habit and optical properties of KDP single crystal. In this paper, KDP crystals were grown from an aqueous solution doped with different ...During the process of KDP crystal growth, metal ions strongly affect the growth habit and optical properties of KDP single crystal. In this paper, KDP crystals were grown from an aqueous solution doped with different concentration of Fe^3+ dopant by traditional temperaturereduction method and "point-seed" rapid growth method. Furthermore, we examined the light scatter and measured the transmission of these KDP crystals. It is found that the dopant of Fe^3+ ion can improve the stability of the KDP growth solution when its concentration is less than 30 ppm. The effects of Fe^3+ ion on the growth habit and optical properties of KDP crystal are also obvious.展开更多
In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was ev...In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was evaluated by degrading methylene blue (MB) solution. The results indicated that TiO2 crystalline size was reduced and phase transformation of anatase to rutile was suppressed as the content of doped Nd3+ ion increased in the co-doped TiO2. The UV-vis spectra of co-doped TiO2 seemed to simply overlay two spectra of single metal doped TiO2, and had significantly increased absorbance in the ranges of 400~500 nm, 565~600 nm and 730~765 nm as compared to pure TiO2. The photocatalytic activity of co-doped TiO2 was obviously enhanced, and raised about 30% compared to that of pure TiO2 as doped Nd3+ content was 0.15% and Fe3+ content was 0.05%, respectively. The enhanced catalytic activity was attributed to a synergistic effect of two doped ions, where doped Fe3+ ion inhibited the recombination of photogenerated electron and hole, and Nd3+ ion brought more surface carboxyl to promote the degradation reaction.展开更多
In this study, the adsorption kinetics, equilibrium and thermodynamics of Fe3+ ions on natural (NAP) and synthetic (HAP) apaties were examined. The adsorption efficiency of Fe3+ onto the NAP and HAP was increased with...In this study, the adsorption kinetics, equilibrium and thermodynamics of Fe3+ ions on natural (NAP) and synthetic (HAP) apaties were examined. The adsorption efficiency of Fe3+ onto the NAP and HAP was increased with increasing temperature. The kinetics of adsorption of Fe3+ ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 37.15 and 49.84 kJ·mol 1 for NAP and HAP, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin–Redushkevich (D–R) isotherm equations at different temperatures. RL separation factor for Langmuir and the n value for Freundlich isotherm show that Fe3+ ions are favorably adsorbed by NAP and HAP. Various thermodynamic parameters such as enthalpy (ΔH), Gibbs free energy (ΔG) and entropy (ΔS) changes were computed and the results showed that the adsorption of Fe3+ ions onto NAP and HAP were spontaneous and endothermic in nature.展开更多
A n-Hexyl NH 3Sr 2Nb 3O 10 is obtained by the stepwise ion-exchange reaction,then is dispersed in aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate,[Fe 3(OCOCH 3) 7OH·2H 2O]NO 3,and the ...A n-Hexyl NH 3Sr 2Nb 3O 10 is obtained by the stepwise ion-exchange reaction,then is dispersed in aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate,[Fe 3(OCOCH 3) 7OH·2H 2O]NO 3,and the interlayer potassium cations of the perovskite niobate are exchanged with the partially hydrolyzed trinuclear acetato complex ions.On heating,the exchanged complex ions are converted into iron oxide pillars which keep the perovskite sheets apart.The product is characterized by XRD,SEM,EDAX and surface area measurement respectively.展开更多
基金supported by the National Key Project on Basic Research(Grant No.2011CB935904)the National Natural Science Foundation of China(Grant No.21171163,91127020)NSF for Distinguished Young Scholars of Fujian Province(Grant No.2013J06006)
文摘A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of SWCNTs,as confirmed by X-ray diffraction(XRD),transmission electron microscope(TEM) and energy dispersive X-ray spectroscopy(EDX).Due to the synergistic effect of different components,the as synthesized SnO2-Fe2O3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g-1 which could be maintained after 50 cycles at 200 mA·g-1.Even at a high rate of2000 mA·g-1,the capacity was still remained at 656 mAh·g-1.
文摘In the production process of titanium dioxide with sulfuric acid, the contamination of the titanium sulfate solution (the ilmenite leaching solution) in the Fe 3+ reduction stage by iron scraps is a practical problem because it is difficult to guarantee the quality of the iron scraps. In this research, a new method, called the ion exchange membrane primary cell method, for reduction of Fe 3+ in the titanium sulfate solution has been advanced. The positive compartment of the primary cell consists of lead (copper) electrode and the titanium sulfate solution, and the negative compartment consists of iron electrode and acidic FeSO 4 solution. The anion ion exchange membrane is used as the diaphragm between two compartments. Fe 3+ in the titanium sulfate solution is reduced by the electric discharge of the primary cell. The effects of temperature, stirring strength of the solution and membrane area on the reduction rate have been investigated. The experimental result shows that the optimum current density can be higher than 100 A/m 2.
基金supported by the Tianjin Committee of Science and Technology (No.14JCZDJC32400)Tianjin Science and Technology Innovation Platform Program (No.14TXGCCX00017)
文摘Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)spheres,used as anode material for lithium ion batteries,were successfully fabricated by Stober method.XRD patterns reveal that Fe3O4@TiO2@C Y-S spheres possess a good crystallinity.But the diffraction peaks’intensity of Fe3O4 crystals in the composites is much weaker than that of bare Fe3O4 spheres,indicating that the outer anatase TiO2@C layer can cover up the diffraction peaks of inner Fe3O4 spheres.The yolk-shell structure of Fe3O4@TiO2@C spheres is further characterized by TEM,HAADFSTEM,and EDS mapping.The yolk-shell structure is good for improving the cycling stability of the inner Fe3O4 spheres during lithium ions insertion-extraction processes.When tested at 200 mA/g,the Fe3O4@TiO2@C Y-S spheres can provide a stable discharge capacity of 450 mAh/g over 100 cycles,which is much better than that of bare Fe3O4 spheres and TiO2@C spheres.Furthermore,cyclic voltammetry curves show that the composites have a good cycling stability compared to bare Fe3O4 spheres.
文摘Single-crystal Fe_3 O_4 with monodisperse microspheres structure has been used for individual electrochemical detection of heavy metal ions. Morphology and structure of the as-prepared Fe_3 O_4 microspheres were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffraction(XRD). Meanwhile the electrochemical properties of the Fe_3 O_4 microspheres modified glass carbon electrodes(GCE) were characterized by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS), and the enhanced electrochemical response in stripping voltammetry for individual detection of Pb(Ⅱ), Hg(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) was evaluated using square wave anodic stripping voltammetry(SWASV). With high specific surface area and excellent catalytic activity toward heavy metal ions, the as-prepared monodisperse and single-crystal Fe_3 O_4 microspheres show a preferable sensing sensitivity(22.2 μA/μM) and limit of detection(0.0699 μM) toward Pb(Ⅱ). Furthermore, the electrochemical sensor of Fe_3 O_4 microspheres exhibits excellent stability and it also offers potential practical applicability for the determination of heavy metal ions in real water samples. This study provides a potential simple and low cost iron oxide for the construction of sensitive electrochemical sensors applied to monitor and control the pollution of toxic metal ions.
基金the State High Technology Program for Inertial Confinement Fusion and National Science Foundation (No.59823003)Project of United Foundation (No.10676019)Youth Scientist Fund of Shandong Province (Nos. 2004BS04022 and 03BS079)
文摘During the process of KDP crystal growth, metal ions strongly affect the growth habit and optical properties of KDP single crystal. In this paper, KDP crystals were grown from an aqueous solution doped with different concentration of Fe^3+ dopant by traditional temperaturereduction method and "point-seed" rapid growth method. Furthermore, we examined the light scatter and measured the transmission of these KDP crystals. It is found that the dopant of Fe^3+ ion can improve the stability of the KDP growth solution when its concentration is less than 30 ppm. The effects of Fe^3+ ion on the growth habit and optical properties of KDP crystal are also obvious.
基金Project supported by Beijing Excellent Talents Training Fund (20061D0502200299)
文摘In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was evaluated by degrading methylene blue (MB) solution. The results indicated that TiO2 crystalline size was reduced and phase transformation of anatase to rutile was suppressed as the content of doped Nd3+ ion increased in the co-doped TiO2. The UV-vis spectra of co-doped TiO2 seemed to simply overlay two spectra of single metal doped TiO2, and had significantly increased absorbance in the ranges of 400~500 nm, 565~600 nm and 730~765 nm as compared to pure TiO2. The photocatalytic activity of co-doped TiO2 was obviously enhanced, and raised about 30% compared to that of pure TiO2 as doped Nd3+ content was 0.15% and Fe3+ content was 0.05%, respectively. The enhanced catalytic activity was attributed to a synergistic effect of two doped ions, where doped Fe3+ ion inhibited the recombination of photogenerated electron and hole, and Nd3+ ion brought more surface carboxyl to promote the degradation reaction.
文摘In this study, the adsorption kinetics, equilibrium and thermodynamics of Fe3+ ions on natural (NAP) and synthetic (HAP) apaties were examined. The adsorption efficiency of Fe3+ onto the NAP and HAP was increased with increasing temperature. The kinetics of adsorption of Fe3+ ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 37.15 and 49.84 kJ·mol 1 for NAP and HAP, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin–Redushkevich (D–R) isotherm equations at different temperatures. RL separation factor for Langmuir and the n value for Freundlich isotherm show that Fe3+ ions are favorably adsorbed by NAP and HAP. Various thermodynamic parameters such as enthalpy (ΔH), Gibbs free energy (ΔG) and entropy (ΔS) changes were computed and the results showed that the adsorption of Fe3+ ions onto NAP and HAP were spontaneous and endothermic in nature.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .5 0 0 0 2 0 0 7) MajorProgramofMinistryofEducation (No.0 2 0 1)andOpenFoundationofStateKeyLabofAdvancedTech .forMaterialsSynthesisandProcessing.
文摘A n-Hexyl NH 3Sr 2Nb 3O 10 is obtained by the stepwise ion-exchange reaction,then is dispersed in aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate,[Fe 3(OCOCH 3) 7OH·2H 2O]NO 3,and the interlayer potassium cations of the perovskite niobate are exchanged with the partially hydrolyzed trinuclear acetato complex ions.On heating,the exchanged complex ions are converted into iron oxide pillars which keep the perovskite sheets apart.The product is characterized by XRD,SEM,EDAX and surface area measurement respectively.