The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(...The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.展开更多
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a...For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.展开更多
Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the c...Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the crack is located in a welded joint with high-gradient microstructure and mechanical property distribution,it becomes difficult to evaluate the fracture toughness behavior since the stress distribution may be affected by various factors.In recent years,numerical method has become an ideal approach to reveal the essence and mechanism of fracture toughness behavior.This study focuses on the crack initiation behavior and driving force at different interfaces in dissimilar steel welded joints.The stress and strain fields around the crack tip lying at the interfaces of ductile-ductile,ductile-brittle and brittle-brittle materials are analyzed by the numerical simulation.For the interface of ductile-ductile materials,the strain concentration on the softer material side is responsible for ductile fracture initiation.For the ductile-brittle interface,the shielding effect of the ductile material plays an important role in decreasing the fracture driving force on the brittle material side.In the case of brittle-brittle interface,a careful matching is required,because the strength mismatch decreases the fracture driving force in one side,whereas the driving force in another side is increased.The results are deemed to offer support for the safety assessment of welded structures.展开更多
The interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints with a nickel-based filler metal during aging was studied in detail to elucidate the mechanism of premature failures of this k...The interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints with a nickel-based filler metal during aging was studied in detail to elucidate the mechanism of premature failures of this kind of joints.The results showed that not only a band of granular Cr_(23)C_(6)carbides were formed along the fusion boundary in the ferritic steel during aging,but also a large number of granular or plate-like Cr_(23)C_(6)carbides,which have a cube-cube orientation relationship with the matrix,were also precipitated on the weld metal side of the fu-sion boundary,making this zone be etched more easily than the other zone and become a dark etched band.Stacking faults were found in some Cr_(23)C_(6)carbides.In the as-welded state,deformation twins were observed in the weld metal with a fully austenitic structure.The peak micro-hardness was shifted from the ferritic steel side to the weld metal side of the fusion boundary after aging and the peak value increased signific-antly.Based on the experimental results,a mechanism of premature failures of the joints was proposed.展开更多
The fracture toughness of OS-F101 415F pipeline steel and its welded joint had been systematically studied. The present results suggest that OS-F101 415F pipeline steel and its welded joint all have relatively high fr...The fracture toughness of OS-F101 415F pipeline steel and its welded joint had been systematically studied. The present results suggest that OS-F101 415F pipeline steel and its welded joint all have relatively high fracture toughness values at 0℃, which are higher than 0.30 mm. The main reason for such results is the over 80% acicular ferrite in their mwrostructure展开更多
This paper describes the alloy design philosophy for the improvement of long-term creep strength of tempered martensitic 9Cr steel,including welded joints.The creep life t_r is inversely proportional to the minimum cr...This paper describes the alloy design philosophy for the improvement of long-term creep strength of tempered martensitic 9Cr steel,including welded joints.The creep life t_r is inversely proportional to the minimum creep rateε_(min) times the increase in creep rate by strain dlnε/dεin the acceleration region as t_r = 1.5/[(ε_(min)) (dlnε/dε)].The parametersε_(min) and dlnε/dεare closely correlated with the time to minimum creep rate t_m and the strain to minimum creep rateε_m,which characterize the creep deformation behavior in the transient region.The boundary and sub-boundary hardening is shown to be the most important strengthening mechanism in creep of 9Cr steel and is enhanced by fine dispersions of precipitates along boundaries.The addition of boron reduces the coarsening rate of M_(23)C_6 carbides along boundaries near prior austenite grain boundaries during creep.The enhancement of boundary and sub-boundary hardening increases the t_m and decreases theε_(min),which improves the creep life.The boundary and sub-boundary hardening is significantly reduced in fine-grained region of heataffected -zone(HAZ) of conventional steel P92 welded joints,promoting TypeⅣfracture.In NIMS 9Cr boron steel welded joints,the distribution of carbonitrides along boundaries are substantially the same between the HAZ and base metal,suppressing the TypeⅣfracture.展开更多
Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investiga...Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper–nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper–nickel base metal, respectively.展开更多
Austenitic stainless steel(ASS) and High nickel steel(HNS) welding consumables are being used for welding Q&T steels, as they have higher solubility for hydrogen in austenitic phase, to avoid hydrogen induced crac...Austenitic stainless steel(ASS) and High nickel steel(HNS) welding consumables are being used for welding Q&T steels, as they have higher solubility for hydrogen in austenitic phase, to avoid hydrogen induced cracking(HIC) but they are very expensive. In recent years, the developments of low hydrogen ferritic steel(LHF) consumables that contain no hygroscopic compounds are utilized for welding Q&T steels. Heat affected zone(HAZ) softening is another critical issue during welding of armour grade Q&T steels and it depends on the welding process employed and the weld thermal cycle. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on metallurgical characteristics of armour grade Q&T steel joints by various metallurgical characterization procedures. Shielded metal arc welding(SMAW) and flux cored arc welding(FCAW) processes were used for making welds using ASS, LHF and HNS welding consumables. The joints fabricated by using LHF consumables offered lower degree of HAZ softening and there is no evidence of HIC in the joints fabricated using LHF consumables.展开更多
Quenched and Tempered(Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking(HIC) in th...Quenched and Tempered(Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking(HIC) in the heat affected zone(HAZ) after welding. The use of austenitic stainless steel(ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel(LHF) consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding(SMAW) and Flux cored arc welding(FCAW) were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.展开更多
Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic st...Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.展开更多
The spot welds nugget cracking of austenitic stainless steel at temperatures between 700°C - 1010°C was investigated. Traditionally, the cracks have been observed around the spot nugget in welded temperature...The spot welds nugget cracking of austenitic stainless steel at temperatures between 700°C - 1010°C was investigated. Traditionally, the cracks have been observed around the spot nugget in welded temperature. Actually, these cracks are developed due to incomplete melting and inappropriate electrode pressure, which causes an expulsion of molten metal. These cracks start to grow and cause either the interface or plug fracture according to the loading type. In this work, the micro-cracks in the weld nugget were indicated for this type of steel at elevated temperature. Cracks appear in a certain range of temperature;about 700°C - 750°C. The cracks like defect and cavitations were presented. According to the fracture mechanics point of view, these cracks reduce the mechanical strength. Therefore, these cracks have to be taken into account with a certain precaution. Moreover, considering the working temperature and reducing the element may develop ferrite particles.展开更多
The impact wear behavior and damage mechanism of dissimilar welded joints between U26Mn frog and U75 V rail before and after normalizing treatment were studied by cyclic impact tests.The experiment indicated that the ...The impact wear behavior and damage mechanism of dissimilar welded joints between U26Mn frog and U75 V rail before and after normalizing treatment were studied by cyclic impact tests.The experiment indicated that the impact wear volume of the joints increased with the increasing number of impact cycles.The main wear mechanisms include pitting wear,mild fatigue wear,delamination wear,and fatigue wear,and plastic deformation was the primary impact wear mechanism.Among them,fatigue wear had the greatest influence on wear volume,while other wear mechanisms had limited effect.The impact wear resistance of the base material was better than that of the heat-affected zone.Normalizing treatment was beneficial to improving the impact wear resistance of welded joints owing to its effect to promote pearlite recovery,grain refinement,and uniform distribution of grains.The martensite generated in the rail welded joints aggravated the impact wear damage to the materials,which should be avoided.展开更多
Cold metal transfer (CMT) welding of nickel-coated Q235 steel studs with 606l Al alloy was carried out using ER4043 as filler metal. The welding process was stable, and appearance of weld formed well without surface...Cold metal transfer (CMT) welding of nickel-coated Q235 steel studs with 606l Al alloy was carried out using ER4043 as filler metal. The welding process was stable, and appearance of weld formed well without surface defect under the parameters of welding current 121 A, welding voltage 15.4 V and welding speed 6 r/min. The microstructure of fiUer metal was analyzed by means of scanning electron microscopy. The filler metal and 6061 Al alloy were fused to form fusion welding interface, the fusion zone had a good bonding without any micro defect. The steel stud did not melt and brazing interface was formed between the filler metal and steel stud. Two different reaction layers existed in the brazing interface, the Fe2Al5 layer about 10 -12 p^m formed near the steel stud side, and the other layer was mainly composed of FeAl3. Nickel-rich zone was formed in the root toe area of the fillet weld, which was mainly composed of Al3Ni2. The tensile tests showed that the maximum shearing strength of the joints was 129 MPa. The joint was brittle fractured in the intermetallic compound layer where plenty of FeAl3 were distributed continuously.展开更多
Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile ...Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa.展开更多
基金Funded by State Key Lab of Advanced Welding and Joint,Harbin Institute of Technology(No.09014)the Natural Science Foundation of Hubei Province in China(No.2007ABA040)
文摘The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.
基金Supported by Youth Elite Project of CNNC and Modular HTGR Super-critical Power Generation Technology Collaborative Project between CNNC and Tsinghua University Project of China(Grant No.ZHJTIZYFGWD20201).
文摘For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675336,U1660101).
文摘Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the crack is located in a welded joint with high-gradient microstructure and mechanical property distribution,it becomes difficult to evaluate the fracture toughness behavior since the stress distribution may be affected by various factors.In recent years,numerical method has become an ideal approach to reveal the essence and mechanism of fracture toughness behavior.This study focuses on the crack initiation behavior and driving force at different interfaces in dissimilar steel welded joints.The stress and strain fields around the crack tip lying at the interfaces of ductile-ductile,ductile-brittle and brittle-brittle materials are analyzed by the numerical simulation.For the interface of ductile-ductile materials,the strain concentration on the softer material side is responsible for ductile fracture initiation.For the ductile-brittle interface,the shielding effect of the ductile material plays an important role in decreasing the fracture driving force on the brittle material side.In the case of brittle-brittle interface,a careful matching is required,because the strength mismatch decreases the fracture driving force in one side,whereas the driving force in another side is increased.The results are deemed to offer support for the safety assessment of welded structures.
文摘The interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints with a nickel-based filler metal during aging was studied in detail to elucidate the mechanism of premature failures of this kind of joints.The results showed that not only a band of granular Cr_(23)C_(6)carbides were formed along the fusion boundary in the ferritic steel during aging,but also a large number of granular or plate-like Cr_(23)C_(6)carbides,which have a cube-cube orientation relationship with the matrix,were also precipitated on the weld metal side of the fu-sion boundary,making this zone be etched more easily than the other zone and become a dark etched band.Stacking faults were found in some Cr_(23)C_(6)carbides.In the as-welded state,deformation twins were observed in the weld metal with a fully austenitic structure.The peak micro-hardness was shifted from the ferritic steel side to the weld metal side of the fusion boundary after aging and the peak value increased signific-antly.Based on the experimental results,a mechanism of premature failures of the joints was proposed.
基金This work was financially supported by National Natural Science Foundation of China and Baoshan Iron & Steel Co., Ltd (50334050).
文摘The fracture toughness of OS-F101 415F pipeline steel and its welded joint had been systematically studied. The present results suggest that OS-F101 415F pipeline steel and its welded joint all have relatively high fracture toughness values at 0℃, which are higher than 0.30 mm. The main reason for such results is the over 80% acicular ferrite in their mwrostructure
文摘This paper describes the alloy design philosophy for the improvement of long-term creep strength of tempered martensitic 9Cr steel,including welded joints.The creep life t_r is inversely proportional to the minimum creep rateε_(min) times the increase in creep rate by strain dlnε/dεin the acceleration region as t_r = 1.5/[(ε_(min)) (dlnε/dε)].The parametersε_(min) and dlnε/dεare closely correlated with the time to minimum creep rate t_m and the strain to minimum creep rateε_m,which characterize the creep deformation behavior in the transient region.The boundary and sub-boundary hardening is shown to be the most important strengthening mechanism in creep of 9Cr steel and is enhanced by fine dispersions of precipitates along boundaries.The addition of boron reduces the coarsening rate of M_(23)C_6 carbides along boundaries near prior austenite grain boundaries during creep.The enhancement of boundary and sub-boundary hardening increases the t_m and decreases theε_(min),which improves the creep life.The boundary and sub-boundary hardening is significantly reduced in fine-grained region of heataffected -zone(HAZ) of conventional steel P92 welded joints,promoting TypeⅣfracture.In NIMS 9Cr boron steel welded joints,the distribution of carbonitrides along boundaries are substantially the same between the HAZ and base metal,suppressing the TypeⅣfracture.
基金the funding support of Babol Noshirvani University of Technology (No. BNUT/370167/97)
文摘Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper–nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper–nickel base metal, respectively.
基金Armament Research Board (ARMREB), New Delhi for funding this project work (Project no. MAA/03/ 41)
文摘Austenitic stainless steel(ASS) and High nickel steel(HNS) welding consumables are being used for welding Q&T steels, as they have higher solubility for hydrogen in austenitic phase, to avoid hydrogen induced cracking(HIC) but they are very expensive. In recent years, the developments of low hydrogen ferritic steel(LHF) consumables that contain no hygroscopic compounds are utilized for welding Q&T steels. Heat affected zone(HAZ) softening is another critical issue during welding of armour grade Q&T steels and it depends on the welding process employed and the weld thermal cycle. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on metallurgical characteristics of armour grade Q&T steel joints by various metallurgical characterization procedures. Shielded metal arc welding(SMAW) and flux cored arc welding(FCAW) processes were used for making welds using ASS, LHF and HNS welding consumables. The joints fabricated by using LHF consumables offered lower degree of HAZ softening and there is no evidence of HIC in the joints fabricated using LHF consumables.
基金New Delhi for funding this project work(Project No MAA/03/41)
文摘Quenched and Tempered(Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking(HIC) in the heat affected zone(HAZ) after welding. The use of austenitic stainless steel(ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel(LHF) consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding(SMAW) and Flux cored arc welding(FCAW) were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.
文摘Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.
文摘The spot welds nugget cracking of austenitic stainless steel at temperatures between 700°C - 1010°C was investigated. Traditionally, the cracks have been observed around the spot nugget in welded temperature. Actually, these cracks are developed due to incomplete melting and inappropriate electrode pressure, which causes an expulsion of molten metal. These cracks start to grow and cause either the interface or plug fracture according to the loading type. In this work, the micro-cracks in the weld nugget were indicated for this type of steel at elevated temperature. Cracks appear in a certain range of temperature;about 700°C - 750°C. The cracks like defect and cavitations were presented. According to the fracture mechanics point of view, these cracks reduce the mechanical strength. Therefore, these cracks have to be taken into account with a certain precaution. Moreover, considering the working temperature and reducing the element may develop ferrite particles.
基金The work was supported by the National Key Research and Development Project(2017YFB0304500).
文摘The impact wear behavior and damage mechanism of dissimilar welded joints between U26Mn frog and U75 V rail before and after normalizing treatment were studied by cyclic impact tests.The experiment indicated that the impact wear volume of the joints increased with the increasing number of impact cycles.The main wear mechanisms include pitting wear,mild fatigue wear,delamination wear,and fatigue wear,and plastic deformation was the primary impact wear mechanism.Among them,fatigue wear had the greatest influence on wear volume,while other wear mechanisms had limited effect.The impact wear resistance of the base material was better than that of the heat-affected zone.Normalizing treatment was beneficial to improving the impact wear resistance of welded joints owing to its effect to promote pearlite recovery,grain refinement,and uniform distribution of grains.The martensite generated in the rail welded joints aggravated the impact wear damage to the materials,which should be avoided.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20131261)
文摘Cold metal transfer (CMT) welding of nickel-coated Q235 steel studs with 606l Al alloy was carried out using ER4043 as filler metal. The welding process was stable, and appearance of weld formed well without surface defect under the parameters of welding current 121 A, welding voltage 15.4 V and welding speed 6 r/min. The microstructure of fiUer metal was analyzed by means of scanning electron microscopy. The filler metal and 6061 Al alloy were fused to form fusion welding interface, the fusion zone had a good bonding without any micro defect. The steel stud did not melt and brazing interface was formed between the filler metal and steel stud. Two different reaction layers existed in the brazing interface, the Fe2Al5 layer about 10 -12 p^m formed near the steel stud side, and the other layer was mainly composed of FeAl3. Nickel-rich zone was formed in the root toe area of the fillet weld, which was mainly composed of Al3Ni2. The tensile tests showed that the maximum shearing strength of the joints was 129 MPa. The joint was brittle fractured in the intermetallic compound layer where plenty of FeAl3 were distributed continuously.
基金Project(2010CB731704)supported by the National Basic Research Program of ChinaProject(2011DFR50760)supported by International Science&Technology Cooperation Program of China
文摘Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa.