期刊文献+
共找到13,423篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructure Stability of V and Ta Microalloyed 12%Cr Reduced Activation Ferrite/Martensite Steel during Long-term Aging at 650℃ 被引量:5
1
作者 Xiang Xiao Guoquan Liu +2 位作者 Benfu Hu Jinsan Wang Wenbin Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第3期311-319,共9页
In view of developing novel alloys for applications in supercritical water-cooled reactor fuel cladding and in-core components, a 12%Cr reduced activation ferrite/martensite(RAFM) steel with good corrosion resistance ... In view of developing novel alloys for applications in supercritical water-cooled reactor fuel cladding and in-core components, a 12%Cr reduced activation ferrite/martensite(RAFM) steel with good corrosion resistance and irradiation performance was developed. V and Ta were added to form fine MX type carbonitrides and enhance the high temperature creep rupture strength. Microstructure stability of the steel during long-term aging at 650 C was studied experimentally combined with the simulation of ThermoCalc and DICTRA software. The results show that the precipitates in the steel during long-term aging contain M23C6, MX and Laves phase. M23C6 carbides play a major role in the stabilization of the tempered martensite lath structure by exerting a large Zener pinning force as compared with MX and Laves phase.Adding V and Ta in the steel can not only promote MX precipitation, but also refine M23C6 carbides and thus improve the thermal stability of lath/subgrains, which is beneficial to the improvement of high temperature microstructure stability of the 12%Cr RAFM steel. 展开更多
关键词 12%Cr REDUCED ACTIVATION ferrite/martensite STEEL
原文传递
Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92
2
作者 Lei Peng Shang-Ming Chen +6 位作者 Jing-Yi Shi Yong-Jie Sun Yi-Fei Liu Yin-Zhong Shen Hong-Ya He Hui-Juan Wang Jie Tian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期186-199,共14页
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s... Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance. 展开更多
关键词 Grain boundary engineering ferritic/martensitic steel Prior austenite grain boundary character distribution Grain boundary connectivity Intergranular damage resistance
下载PDF
Research progress of permanent ferrite magnet materials
3
作者 XU Bin CHEN Yu-feng +3 位作者 ZHOU Yu-juan LUO Bi-yun ZHONG Shou-guo LIU Xing-ao 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1723-1762,共40页
Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a... Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency. 展开更多
关键词 permanent ferrite magnetic materials HIGH-PERFORMANCE nanosizing
下载PDF
Photocatalytic application of magnesium spinel ferrite in wastewater remediation:A review
4
作者 Rohit Jasrotia Nikhil Jaswal +3 位作者 Jyoti Prakash Chan Choon Kit Jagpreet Singh Abhishek Kandwal 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期490-505,共16页
This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis ... This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis methods,and composite materials on the degradation efficiency of these pollutants.Our analysis reveals the versatile and promising nature of magnesium ferrite-based catalysts,offering the valuable insights into their practical application for restoring the environment.Due to the smaller band gap and magnetic nature of magnesium ferrite,it holds the benefit of utilising the broader spectrum of light while also being recoverable.The in-depth analysis of magnesium ferrites'photocatalytic mechanism could lead to the development of cheap and reliable photocatalyst for the wastewater treatment.This concise review offers a thorough summary of the key advancements in this field,highlighting the pivotal role of the magnesium ferrite based photocatalysts in addressing the pressing global issue of organic pollutants in wastewater. 展开更多
关键词 Magnesium ferrite WASTEWATER DYES ANTIBIOTICS Photocatalytic degradation
下载PDF
Synthesis of nitrogen-doped reduced graphene oxide/magnesium ferrite/polyaniline composite aerogel as a lightweight,broadband and efficient microwave absorber
5
作者 Ruiwen Shu Lijuan Nie +1 位作者 Ziwei Zhao Xunhong Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第8期115-124,共10页
The fabrication of graphene-based microwave absorbing materials with low density,small filling ratio,broad bandwidth and strong absorption remains a huge challenge.In this work,nitrogen-doped reduced graphene oxide/ma... The fabrication of graphene-based microwave absorbing materials with low density,small filling ratio,broad bandwidth and strong absorption remains a huge challenge.In this work,nitrogen-doped reduced graphene oxide/magnesium ferrite/polyaniline(NRGO/MgFe_(2)O_(4)/PANI)composite aerogel was synthesized by a three-step method of solvothermal reaction,in situ chemical oxidation polymerization and hydrothermal self-assembly.The results showed that the obtained aerogels had a unique three-dimensional(3D)porous network structure and low bulk density(11.1-13.0 mg cm^(−3)).It was worth noting that in the NRGO/MgFe_(2)O_(4)/PANI ternary composite aerogel,MgFe_(2)O_(4)coated with a thin PANI layer was anchored on the surface of NRGO sheets.Furthermore,the NRGO/MgFe_(2)O_(4)/PANI ternary composite aerogel showed much better microwave absorbing capacity compared with pure NRGO aerogel and NRGO/MgFe_(2)O_(4)binary composite aerogel.When the filling ratio was as low as 11.5 wt.%,the obtained ternary composite aerogel exhibited the maximum effective absorption bandwidth of 7.0 GHz at a matching thickness of 2.1 mm,and the minimum reflection loss of-42.9 dB at a thickness of 3.57 mm.Additionally,the prob-able microwave dissipation mechanism was also elucidated.It was believed that this study would pave the way for the construction of 3D graphene-based composites as lightweight,broadband and efficient microwave absorbents. 展开更多
关键词 Graphene Composite aerogel POLYANILINE Magnesium ferrite Microwave absorption
原文传递
Effective Elimination of Hazardous Chromium (VI) Using Periodic Elements and Contemporary Adsorption Methods by Using Magnesium Ferrite Nanoparticle: A Review
6
作者 Nazmun Nahar Mahabub Hossain Swaron +1 位作者 Md. Aliuzzaman Sheik Md. Jamal Uddin 《Journal of Environmental Protection》 2024年第5期596-619,共24页
A well-known hazardous metal and top contaminant in wastewater is hexavalent chromium. The two forms of most commonly found chromium are chromate ( CrO 4 2− ) and dichromate ( Cr 2 O 7 2− ). Leather tanning, cooling t... A well-known hazardous metal and top contaminant in wastewater is hexavalent chromium. The two forms of most commonly found chromium are chromate ( CrO 4 2− ) and dichromate ( Cr 2 O 7 2− ). Leather tanning, cooling tower blow-down, plating, electroplating, rinse water sources, anodizing baths etc. are the main sources of Cr (VI) contamination. The Cr (VI) is not only non-biodegradable in the environment but also carcinogenic to living population. It is still difficult to treat Cr contaminated waste water effectively, safely, eco-friendly, and economically. As a result, many techniques have been used to treat Cr (VI)-polluted wastewater, including adsorption, chemical precipitation, coagulation, ion-exchange, and filtration. Among these practices, the most practical method is adsorption for the removal of Cr (VI) from aqueous solutions, which has gained widespread acceptance due to the ease of use and affordability of the equipment and adsorbent. It has been revealed that Fe-based adsorbents’ oxides and hydroxides have high adsorptive potential to lower Cr (VI) content below the advised threshold. Fe-based adsorbents were also discovered to be relatively cheap and toxic-free in Cr (VI) treatment. Fe-based adsorbents are commonly utilized in industry. It has been discovered that nanoparticles of Fe-, Ti-, and Cu-based adsorbents have a better capacity to remove Cr (VI). Cr (VI) was effectively removed from contaminated water using mixed element-based adsorbents (Fe-Mn, Fe-Ti, Fe-Cu, Fe-Zr, Fe-Cu-Y, Fe-Mg, etc.). Initial findings suggest that Cr (VI) removal from wastewater may be accomplished by using magnesium ferrite nanomaterials as an efficient adsorbent. 展开更多
关键词 Chromium (VI) Periodic Elements Adsorption ELIMINATION Magnesium ferrite
下载PDF
Enhancing layered perovskite ferrites with ultra-high-density nanoparticles via cobalt doping for ceramic fuel cell anode
7
作者 Shuo Zhai Rubao Zhao +9 位作者 Hailong Liao Ling Fu Senran Hao Junyu Cai Yifan Wu Jian Wang Yunhong Jiang Jie Xiao Tao Liu Heping Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期39-48,共10页
Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural co... Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural configuration.Herein,we employ controlled Co doping to effectively enhance the nanoparticle exsolution process in layered perovskite ferrites materials.CoFe alloy nanoparticles with ultra-high-density are exsolved on the(PrBa)_(0.95)(Fe_(0.8)Co_(0.1)Nb_(0.1))2O_(5+δ)(PBFCN_(0.1))surface under reducing atmosphere,providing significant amounts of reaction sites and good durability for hydrocarbon catalysis.Under a reducing atmosphere,cobalt facilitates the reduction of iron cations within PBFCN_(0.1),leading to the formation of CoFe alloy nanoparticles.This formation is accompanied by a cation exchange process,wherein,with the increase in temperature,partial cobalt ions are substituted by iron.Meanwhile,Co doping significantly enhance the electrical conductivity due to the stronger covalency of the Cosingle bondO bond compared with Fesingle bondO bond.A single cell with the configuration of PBFCN_(0.1)-Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)|SDC|Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3−δ)(BSCF)-SDC achieves an extremely low polarization resistance of 0.0163Ωcm^(2)and a high peak power density of 740 mW cm^(−2)at 800℃.The cell also shows stable operation for 120 h in H_(2)with a constant current density of 285 mA cm^(−2).Furthermore,employing wet C_(2)H_(6)as fuel,the cell demonstrates remarkable performance,achieving peak power densities of 455 mW cm^(−2)at 800℃and 320 mW cm^(−2)at 750℃,marking improvements of 36%and 70%over the cell with(PrBa)_(0.95)(Fe_(0.9)Nb_(0.1))_(2)O_(5+δ)(PBFN)-SDC at these respective temperatures.This discovery emphasizes how temperature influences alloy nanoparticles exsolution within doped layered perovskite ferrites materials,paving the way for the development of high-performance ceramic fuel cell anodes. 展开更多
关键词 Solid oxide fuel cell ANODE Ethane fuel NANOPARTICLE EXSOLUTION Layered perovskite ferrites
下载PDF
A Design of Modular Interior Ferrite Magnet Fluxswitching Linear Motor for Track Transport
8
作者 Zongsheng Zhang Hao Wang Hong Chen 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期284-294,共11页
A novel topology of modular ferrite magnet fluxswitching linear motor(FMFSLM)use for track transport is presented in this paper,which enables more ferrite magnets to be inserted into the primary iron core.The motor ha... A novel topology of modular ferrite magnet fluxswitching linear motor(FMFSLM)use for track transport is presented in this paper,which enables more ferrite magnets to be inserted into the primary iron core.The motor has a significant low-cost advantage in long-distance linear drive.The proposed FMFSLM’s structure and working principle were introduced.Further,the thrust force expression of the motor was established.The thrust force components triggering thrust force ripple were investigated,and their expressions can be obtained according to the inductances’Fourier series expressions.Resultantly,the relationship between the harmonics of thrust force and that of self-and mutual inductances was revealed clearly.Based on the relationship,a skewed secondary should be practical to reduce the thrust force ripple.Thus,the effect of employing a skewed secondary to the proposed FMFSLM was investigated,and an optimized skewing span distance was determined.Finite element analysis(FEA)was conducted to validate the exactness of the theoretical analysis.The simulation results indicate that the strategy of suppressing thrust force ripple has a significant effect.Meanwhile,the motor maintains a good efficiency characteristic.The results of the prototype experiment are in good agreement with FEAs,which further verifies the proposed modular interior FMFSLM’s practicability. 展开更多
关键词 ferrite magnet flux-switching linear motor(FMFSLM) Detent force Resistance force Force ripple Skewed secondary
下载PDF
Research on Heredity of Coarse Ferrite Grains
9
作者 Wangzhan FAN Weimin GUI Youfeng CHEN 《Research and Application of Materials Science》 2024年第1期5-8,共4页
The changes in austenite grain size of the specimens with coarse ferrite grains under different heat treatment process were investigated.The focus was on studying the effect of annealing on refining coarse ferrite gra... The changes in austenite grain size of the specimens with coarse ferrite grains under different heat treatment process were investigated.The focus was on studying the effect of annealing on refining coarse ferrite grains,as well as the influence of the ferrite grain size on the main technical indicators of gas carburizing.The results show that coarse ferrite grains may not necessarily cause the coarse austenite grains,but may result in mixed austenite grains.After annealing treatment,the coarse ferrite grains can be significantly refined and homogenized.Moreover,the coarse ferrite grains have no significant effects on hardnessand intergranular oxidationof gas carburizing. 展开更多
关键词 grain size coarse ferrite grains AUSTENITE gas carburizing
下载PDF
Influence of rapid heating process on the microstructure and tensile properties of high-strength ferrite–martensite dual-phase steel 被引量:2
10
作者 Pei Li Jun Li +2 位作者 Qing-ge Meng Wen-bin Hu Chun-fu Kuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第9期933-941,共9页
Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at lo... Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP microstructures using the differential Crussard-Jaoul technique demonstrate two stages of work hardening for all samples. 展开更多
关键词 high-strength steel martensite ferrite HEATING MICROSTRUCTURE tensile properties grain refinement
下载PDF
Development of high strength ferrite-martensite stainless steels ( FMSSs) for railway cargo transportation
11
作者 WANG Rumeng YE Xiaoning JIANG Laizhu 《Baosteel Technical Research》 CAS 2013年第3期57-63,共7页
Two ferrite-martensite stainless steels (FMSSs) were developed by Baosteel based on the T4003 composition, through optimizing the manganese and nickel contents ,reducing silicon, carbon and nitrogen contents, contro... Two ferrite-martensite stainless steels (FMSSs) were developed by Baosteel based on the T4003 composition, through optimizing the manganese and nickel contents ,reducing silicon, carbon and nitrogen contents, controlling remnant niobium and molybdenum ,adding sufficient titanium and controlling the processing. In this study ,the physical metallurgy of such FMSSs was investigated with the emphasis on the alloying effect on the phase balance during processing and the transformation behavior during welding for different microstructures. In addition, the mechanical behavior and the weldability were investigated. The results indicate that such steels have a good combination of strength and toughness and better weldability compared with the traditional 1. 4003 steel. Such high strength steels are highly suitable for railway cargo transportation where the wall thickness of the wagons can be reduced,resulting in weight savings. 展开更多
关键词 ferrite-martensite stainless steel microstructure mechanical properties WELDABILITY
下载PDF
Absorption-Dominant mmWave EMI Shielding Films with Ultralow Reflection using Ferromagnetic Resonance Frequency Tunable M-Type Ferrites 被引量:2
12
作者 Horim Lee Seung Han Ryu +3 位作者 Suk Jin Kwon Jae Ryung Choi Sang‑bok Lee Byeongjin Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期1-23,共23页
Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-domina... Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications. 展开更多
关键词 5G communication MmWave EMI shielding M-type ferrites
下载PDF
Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel 被引量:7
13
作者 Lin-qing Xu Dan-tian Zhang +4 位作者 Yong-chang Liu Bao-qun Ning Zhi-xia Qiao Ze-sheng Yan Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第5期438-447,共10页
Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this ... Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron mi- croscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the for- mation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro- structural evolution and hardness variation, the process of tempering can be separated into three steps. 展开更多
关键词 ferritic steel heat resisting TEMPERING PRECIPITATION martensite COARSENING
下载PDF
Effects of Orthogonal Heat Treatment on Microstructure and Mechanical Properties of GN9 Ferritic/Martensitic Steel
14
作者 Tingwei Ma Xianchao Hao Ping Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期289-300,共12页
Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium-cooled fast reactors have been investigated through orthogonal design and analysis.Scanning electron microscopy(SEM),transmission e... Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium-cooled fast reactors have been investigated through orthogonal design and analysis.Scanning electron microscopy(SEM),transmission electron microscopy(TEM),differential scanning calorimeter(DSC),tensile and impact tests were used to evaluate the heat treatment parameters on yield strength,elongation and ductile-to-brittle transition temperature(DBTT).The results indicate that the microstructures of GN9 steel after orthogonal heat treatments consist of tempered martensite,M23C6,MX carbides and MX carbonitrides.The average prior austenite grains increase and the lath width decreases with the austenitizing temperature increasing from 1000°C to 1080°C.Tempering temperature is the most important factor that influences the dislocation evolution,yield strength and elongation compared with austenitizing tempera-ture and cooling methods.Austenitizing temperature,tempering temperature and cooling methods show interactive effects on DBTT.Carbide morphology and distribution,which is influenced by austenitizing and tempering tempera-tures,is the critical microstructural factor that influences the Charpy impact energy and DBTT.Based on the orthogo-nal design and microstructural analysis,the optimal heat treatment of GN9 steel is austenitizing at 1000°C for 0.5 h followed by air cooling and tempering at 760°C for 1.5 h. 展开更多
关键词 ferritic/martensitic steel Orthogonal design M23C6 carbide Ductile-to-brittle transition temperature
下载PDF
Dissolution Behavior of Delta Ferrites in Martensitic Heat-resistant Steel for Ultra Supercritical Units Blades 被引量:1
15
作者 LI Junru WANG Leiying +3 位作者 WANG Hailong ZHANG Pengfei GUO Fanghui ZHANG Xu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第4期730-734,共5页
The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental resul... The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental results show that the chemical compositions of delta ferrites negligibly change with dissolution time.The decrease of dissolution rate of delta ferrites with dissolution time should be attributed to the change of shape and distribution of delta ferrites.The shape of delta ferrites tends to transfer from polygon to sphere with dissolution time,causing the decrease of specific surface area of delta ferrites.The distribution position of delta ferrites tends to transfer from boundaries of austenite grains to interior of austenite grains with dissolution time,decreasing the diffusion coefficient of alloy atoms.Both them decrease the dissolution rate of delta ferrites. 展开更多
关键词 delta ferrites dissolution rate martensitic heat-resistant steel phase transformation carbides
下载PDF
Hysteresis loss free soft magnetic ferrites based on Larmor precession
16
作者 冯双久 赵幸丽 +3 位作者 朱守金 吕庆荣 阚绪材 刘先松 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期433-438,共6页
A big enough transverse magnetic field applied to soft magnetic ferrite toroid can magnetize the ferrite to a saturation level in transverse direction and almost completely suppresses magnetic domain structures in the... A big enough transverse magnetic field applied to soft magnetic ferrite toroid can magnetize the ferrite to a saturation level in transverse direction and almost completely suppresses magnetic domain structures in the ferrite,the response to the longitudinal alternating electromagnetic field changes from the original domain wall displacements and spin rotations to the precession of magnetization around the transverse field,and the hysteresis loss disappears in the ferrites.Both theoretical and experimental results indicate that the permeability and magnetic loss in the ferrite can be controlled by adjusting the transverse magnetic field.A higher Q value with relatively low permeability can be achieved by increasing the transverse field,which ensures that the ferrite can be operated at high frequencies,with magnetic loss being very low. 展开更多
关键词 ferrites Larmor precession magnetic losses hysteresis loss free
下载PDF
Low Temperature Heat Capacity of Zn Substituted Cobalt Ferrite Nanosphere:The Relation between Magnetic Properties and Microstructure
17
作者 YUAN Meng GU Xiaojie +4 位作者 FU Jie WANG Shaoxu SHI Quan TAN Zhicheng XU Fen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期984-995,共12页
Co_((1-x))ZnxFe_(2)O_(4)nanospheres(x=0,0.5,0.8)with a unidirectional cubic spinel structure were prepared by a solvothermal method.By using a range of theoretical and empirical models,the experimental heat capacity v... Co_((1-x))ZnxFe_(2)O_(4)nanospheres(x=0,0.5,0.8)with a unidirectional cubic spinel structure were prepared by a solvothermal method.By using a range of theoretical and empirical models,the experimental heat capacity values were fitted as a function of temperature over a suitable temperature range to explain the possible relationship between the magnetic properties and microstructure of the nanospheres.As a result,at a low temperature(T<10 K),the parameter Bfswdecreases with increasing Zn concentration,implying that the exchange interaction between A and B sites decreases.At a relatively high temperature(T>50 K),the Debye temperature decreases with increasing Zn concentration,which is due to the weakening of the interatomic bonding force after the addition of non-magnetic materials to the Co Fe_(2)O_(4)spinel ferrite. 展开更多
关键词 Co-Zn spinal ferrite nanospheres magnetic properties heat capacity thermodynamic functions PPMS
下载PDF
Electronic Structures and Alloying Behaviors of Ferrite Phases in High Co-Ni Secondary Hardened Martensitic Steels 被引量:1
18
作者 Guoying ZHANG+ and Meiguang ZENG (Northeastern University, Shenyang 110006, China) Guili LIU (Shenyang Polytechnic Universityt Shenyang 110023, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第5期495-498,共4页
The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LOOS) of alloying elements in the steel displays t... The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LOOS) of alloying elements in the steel displays the relationship between solid solubility and the shape of the LDOS. The bond order integral (BOI) between atoms in the steel shows that the directional bonding of the p orbital of Si or C leads to the brittleness of the steel. At last, ΣBOI between atoms demonstrate that C, Co, Mn, Cr, Mo, Si strengthen the alloyed steel through solid-solution effects. 展开更多
关键词 Electronic Structures and Alloying Behaviors of ferrite Phases in High Co-Ni Secondary Hardened martensitic Steels NI
下载PDF
Green synthesis of three-dimensional magnesium ferrite/titanium dioxide/reduced graphene from Garcinia mangostana extract for crystal violet photodegradation and antibacterial activity
19
作者 Tong Hoang Lin Che Quang Cong +10 位作者 Nguyen Thanh Hoai Nam Hoang An Nguyen Duy Hai Ton That Buu Thoi Le Nhat Binh Hoang Le Minh Lam Thanh Ngan Hoang Thuy Kim Ngan Du Chi Vi Ta Dang Khoa Nguyen Huu Hieu 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期111-124,共14页
In this study,three-dimensional porous magnesium ferrite/titanium dioxide/reduced graphene oxide(Mg Fe_2O_(4)-GM/TiO_(2)/rGO(MGTG))was successfully synthesized via green and hydrothermal-supported co-precipitation met... In this study,three-dimensional porous magnesium ferrite/titanium dioxide/reduced graphene oxide(Mg Fe_2O_(4)-GM/TiO_(2)/rGO(MGTG))was successfully synthesized via green and hydrothermal-supported co-precipitation methods using the extract of Garcinia mangostana(G.mangostana)as a reducing agent.The characterization results indicate the successful formation of the nano/micro Mg Fe_(2)O_(4)(MFO)and TiO_(2) on the structure of the reduced graphene oxide(rGO),which can also act as efficient support,alleviating the agglomeration of the nano/micro MFO and TiO_(2).The synergic effects of the adsorption and photodegradation activity of the material were investigated according to the removal of crystal violet(CV)under ultraviolet light.The effects of catalyst dosage,CV concentration,and p H on the CV removal efficiency of the MGTG were also investigated.According to the results,the CV photodegradation of the MGTG-200 corresponded to the pseudo-first-order kinetic model.The reusability of the material after 10 cycles also showed a removal efficiency of 92%.This happened because the materials can easily be recollected using external magnets.In addition,according to the effects of different free radicals·O_(2)^(-),h^(+),and·OH on the photodegradation process,the photocatalysis mechanism of the MGTG was also thoroughly suggested.The antibacterial efficiency of the MGTG was also evaluated according to the inhibition of the Gram-positive bacteria strain Staphylococcus aureus(S.aureus).Concurrently,the antibacterial mechanism of the fabricated material was also proposed.These results confirm that the prepared material can be potentially employed in a wide range of applications,including wastewater treatment and antibacterial activity. 展开更多
关键词 magnesium ferrite titanium dioxide reduced graphene oxide Garcinia mangostana PHOTODEGRADATION ANTIBACTERIAL
下载PDF
Predicting the Volume Fraction of Martensite in Welded Mild Steel Joint Reinforced with Titanium Alloy Powder
20
作者 Alain Ngenzi Stephen A. Akinlabi Anthony K. Muchiri 《Modeling and Numerical Simulation of Material Science》 2023年第2期11-27,共17页
Welded mild steel is used in different applications in engineering. To strengthen the joint, the weld can be reinforced by adding titanium alloy powder to the joint. This results in the formation of incomplete martens... Welded mild steel is used in different applications in engineering. To strengthen the joint, the weld can be reinforced by adding titanium alloy powder to the joint. This results in the formation of incomplete martensite in a welded joint. The incomplete martensite affects mechanical properties. Therefore, this study aims to predict the volume fraction of martensite in reinforced butt welded joints to understand complex phenomena during microstructure formation. To do so, a combination of the finite element method to predict temperature history, and the Koistinen and Marburger equation, were used to predict the volume fraction of martensite. The martensite start temperature was calculated using chemical elements obtained from the dilution-based mixture rule. The curve shape of martensite evolution was observed to be relatively linear due to the small quantity of martensite volume fraction. The simulated result correlated with experimental work documented in the literature. The model can be used in other powder addition techniques where the martensite can be observed in the final microstructure. 展开更多
关键词 Finite Element Analysis martensite Volume Fraction DILUTION Koistinen and Marburger Equation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部