The electron emission property of a novel antiferroelectric cathode material lanthanum-doped lead zirconate stannate titanate (PLZST) on the application of positive or negative triggering voltage pulses has been inves...The electron emission property of a novel antiferroelectric cathode material lanthanum-doped lead zirconate stannate titanate (PLZST) on the application of positive or negative triggering voltage pulses has been investigated. All experiments were performed in a vacuum of 10^(-5) Torr and at room tempera-ture. It was discovered that there were two electron emission pulses when low positive triggering voltage was applied to the rear electrode, and three electron emission pulses when high positive trig-gering voltage was applied. However there were always two electron emission pulses when negative triggering pulses were applied. This phenomenon is proposed to be a result of both field electron emission at triple junctions and electron emission caused by polarization reversal. The experimental observations indicate that domain movement in the vicinity close to the triple junction under applica-tion of the triggering voltage pulse may be a primary origin of electron emission from PLZST.展开更多
We investigate the characteristics of emission current waves of antiferroelectric cathode material lanthanum-doped lead zirconate stannate titanate (PLZST) triggered by pulse field, and analyze the relationship of the...We investigate the characteristics of emission current waves of antiferroelectric cathode material lanthanum-doped lead zirconate stannate titanate (PLZST) triggered by pulse field, and analyze the relationship of the emission current waveforms with the extraction voltage. The close correlation between the triggering pulse polarity and emission current waveform observed evidences the relevant physical process of electron emission. We speculate that the primary emission may result from local phase transition and field emission in the vicinity of triple junctions, and the plasma formation may enhance the electron emission.展开更多
基金the National Basic Research Program of China (Grant No.2002CB613307)the National Natural Science of China (Grant No.50472052)
文摘The electron emission property of a novel antiferroelectric cathode material lanthanum-doped lead zirconate stannate titanate (PLZST) on the application of positive or negative triggering voltage pulses has been investigated. All experiments were performed in a vacuum of 10^(-5) Torr and at room tempera-ture. It was discovered that there were two electron emission pulses when low positive triggering voltage was applied to the rear electrode, and three electron emission pulses when high positive trig-gering voltage was applied. However there were always two electron emission pulses when negative triggering pulses were applied. This phenomenon is proposed to be a result of both field electron emission at triple junctions and electron emission caused by polarization reversal. The experimental observations indicate that domain movement in the vicinity close to the triple junction under applica-tion of the triggering voltage pulse may be a primary origin of electron emission from PLZST.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10474077, 50632030)National Basic Research Program of China (Grant No. 2002CB613307)
文摘We investigate the characteristics of emission current waves of antiferroelectric cathode material lanthanum-doped lead zirconate stannate titanate (PLZST) triggered by pulse field, and analyze the relationship of the emission current waveforms with the extraction voltage. The close correlation between the triggering pulse polarity and emission current waveform observed evidences the relevant physical process of electron emission. We speculate that the primary emission may result from local phase transition and field emission in the vicinity of triple junctions, and the plasma formation may enhance the electron emission.