Analytical models are presented for a negative capacitance double-gate tunnel field-effect transistor(NC DG TFET) with a ferroelectric gate dielectric in this paper. The model accurately calculates the channel poten...Analytical models are presented for a negative capacitance double-gate tunnel field-effect transistor(NC DG TFET) with a ferroelectric gate dielectric in this paper. The model accurately calculates the channel potential profile by solving the Poisson equation with the Landau-Khalatnikov(LK) equation. Moreover, the effects of the channel mobile charges on the potential are also taken into account. We also analyze the dependences of the channel potential and the on-state current on the device parameters by changing the thickness of ferroelectric layer,ferroelectric material and also verify the simulation results accord with commercial TCAD. The results show that the device can obtain better characteristics when the thickness of the ferroelectric layer is larger as it can reduce the shortest tunneling length.展开更多
基金Project supported by the University Natural Science Research Key Project of Anhui Province(No.KJ2017A502)the Talents Project of Anhui Science and Technology University(No.DQYJ201603)the Excellent Talents Supported Project of Colleges and Universities(No.gxyq2018048)
文摘Analytical models are presented for a negative capacitance double-gate tunnel field-effect transistor(NC DG TFET) with a ferroelectric gate dielectric in this paper. The model accurately calculates the channel potential profile by solving the Poisson equation with the Landau-Khalatnikov(LK) equation. Moreover, the effects of the channel mobile charges on the potential are also taken into account. We also analyze the dependences of the channel potential and the on-state current on the device parameters by changing the thickness of ferroelectric layer,ferroelectric material and also verify the simulation results accord with commercial TCAD. The results show that the device can obtain better characteristics when the thickness of the ferroelectric layer is larger as it can reduce the shortest tunneling length.