A Monte-Carlo simulation on phase transitions in ferroelectromagnets (FEMs) in which a weak antiferromagnetic ordering occurs at the Neel point TN far below the ferroelectric ordering point TE was performed. It is rev...A Monte-Carlo simulation on phase transitions in ferroelectromagnets (FEMs) in which a weak antiferromagnetic ordering occurs at the Neel point TN far below the ferroelectric ordering point TE was performed. It is revealed that an intrinsic coupling between spins and electric-dipoles (mp-coupling) does result in a weak ferromagnetic transition from the paramagnetic state at a temperature far above TN, as long as the coupling is strong enough. The magnetoelectric properties as a function of temperature, mp-coupling strength and external electric and magnetic fields were investigated. A mean-field calculation based on the Heisenberg model was performed and a rough consistency between the simulated and calculated ferromagnetic transitions was shown.展开更多
基金This project was financially supported by the National Natural Science Foundation of China (Nos. 50332020, 10021001, 10474039) and the National Key Project for Basic Researches of China (No. 2002CB613303).
文摘A Monte-Carlo simulation on phase transitions in ferroelectromagnets (FEMs) in which a weak antiferromagnetic ordering occurs at the Neel point TN far below the ferroelectric ordering point TE was performed. It is revealed that an intrinsic coupling between spins and electric-dipoles (mp-coupling) does result in a weak ferromagnetic transition from the paramagnetic state at a temperature far above TN, as long as the coupling is strong enough. The magnetoelectric properties as a function of temperature, mp-coupling strength and external electric and magnetic fields were investigated. A mean-field calculation based on the Heisenberg model was performed and a rough consistency between the simulated and calculated ferromagnetic transitions was shown.