A junction composed of ultrathin La0.9Ca0.1MnO3+δ (LCMO) film and 1 wt.% Nb-doped SrTiO3 was fabricated and its magnetoresistance (MR) was studied and compared with LCMO film. It was found that the resistance of...A junction composed of ultrathin La0.9Ca0.1MnO3+δ (LCMO) film and 1 wt.% Nb-doped SrTiO3 was fabricated and its magnetoresistance (MR) was studied and compared with LCMO film. It was found that the resistance of the junction has a similar dependence on magnetic field as that of the LCMO film: the curvature of R-H curves is upward above Curie temperature (Tc) and downward below TC. These behaviours strongly suggest that the rotation of ferromagnetic clusters in manganite also causes MR in the corresponding junction. This MR can be qualitatively understood by the change of the width of the barrier induced by the rotation of ferromagnetic clusters. These results suggest a possibility to obtain junctions with large low-field MR.展开更多
We address velocity-modulation control of electron wave propagation in a normal/ferromagnetic/normal silicene junc- tion with local variation of Fermi velocity, where the properties of charge, valley, and spin transpo...We address velocity-modulation control of electron wave propagation in a normal/ferromagnetic/normal silicene junc- tion with local variation of Fermi velocity, where the properties of charge, valley, and spin transport through the junction are investigated. By matching the wavefunctions at the normal-ferromagnetic interfaces, it is demonstrated that the variation of Fermi velocity in a small range can largely enhance the total conductance while keeping the current nearly fully valley- and spin-polarized. Further, the variation of Fermi velocity in ferromagnetic silicene has significant influence on the valley and spin polarization, especially in the low-energy regime. It may drastically reduce the high polarizations, which can be realized by adjusting the local application of a gate voltage and exchange field on the junction.展开更多
We extend the Blonder, Tinkham and Klapwijk theory to the study of the inverse proximity effects in the normal mental/superconductor/ferromagnet structures. In the superconducting film, there are the gapless supercond...We extend the Blonder, Tinkham and Klapwijk theory to the study of the inverse proximity effects in the normal mental/superconductor/ferromagnet structures. In the superconducting film, there are the gapless superconductivity and the spin-dependent density of states both within and without the energy gap. It indicates an appearance of the inverse-proximity-effect-induced ferromagnetism and a coexistence of ferromagnetism and superconductivity near the interface. The influence of exchange energy in the ferromagnet and barrier strength at the superconductor/ferromagnet interface on the inverse proximity effects is discussed.展开更多
In this paper, the superconducting order parameter and the energy spectrum of the Bogoliubov excitations are obtained from the Bogoliubov-de Gennes (BdG) equation for a ferromagnetic superconductor (FS). Taking in...In this paper, the superconducting order parameter and the energy spectrum of the Bogoliubov excitations are obtained from the Bogoliubov-de Gennes (BdG) equation for a ferromagnetic superconductor (FS). Taking into account the rough interface scattering effect, we calculate the shot noise and the differential conductance of the normalmetal insulator ferromagnetic superconductor junction. It is shown that the exchange energy Eh in FS can lead to splitting of the differential shot noise peaks and the conductance peaks. The energy difference between the two splitting peaks is equal to 2Eh. The rough interface scattering strength results in descent of conductance peaks and the shot noise-to-current ratio but increases the shot noise.展开更多
Spin dynamics in several different types of ferromagnetic metal (FM)/10-nm-thick n-type GaAs quantum well (QW) junctions is studied by means of time-resolved Kerr rotation measurements. Compared with the MnGa/insi...Spin dynamics in several different types of ferromagnetic metal (FM)/10-nm-thick n-type GaAs quantum well (QW) junctions is studied by means of time-resolved Kerr rotation measurements. Compared with the MnGa/insitu doped lO-nm-thick n-type GaAs QW junction, the spin lifetime of the MnGa/modulation-doped 10-nm-thick n-type GaAs QW junction is shorter by a factor of 6, consistent with the D'yakonov Perel' spin relaxation mechanism. Meanwhile, compared with the spin lifetime of the MnAs/in-situ doped 10-nm-thick n-type GaAs QW junction, the MnGa/in-situ doped 10-nm-thick n-type GaAs QW junction is of a spin lifetime longer by a factor of 4.2. The later observation is well explained by the Rashba effect in the presence of structure inversion asymmetry, which acts directly on photo-excited electron spins. We demonstrate that MnGa-like FM/in-situ doped 10-nm-thick n-type GaAs QW junctions, which possess relatively low interfaciai potential barriers, are able to provide long spin lifetimes.展开更多
Nonequilibrium effect due to the imbalance in the number of the ? and ? spin electrons has been studied for the tunneling currents in the ferromagnet-insulator-superconductor (FIS) tunneling junctions within a phenome...Nonequilibrium effect due to the imbalance in the number of the ? and ? spin electrons has been studied for the tunneling currents in the ferromagnet-insulator-superconductor (FIS) tunneling junctions within a phenomenological manner. It has been stated how the nonequilibrium effect should be observed in the spin-polarized quasiparticle tunneling currents, and pointed out that the detectable nonequilibrium effect could be found in the FIS tunneling junction at 77 K using HgBa2Ca2Cu3O8+? (Hg-1223) high-Tc superconductor rather than Bi2Sr2CaCu2O8+? (Bi-2212) one.展开更多
Two-dimensional(2D) magnetic crystals have attracted great attention due to their emerging new physical phenomena. They provide ideal platforms to study the fundamental physics of magnetism in low dimensions. In this ...Two-dimensional(2D) magnetic crystals have attracted great attention due to their emerging new physical phenomena. They provide ideal platforms to study the fundamental physics of magnetism in low dimensions. In this research,magnetic tunneling junctions(MTJs) based on XSe2(X = Mn, V) with room-temperature ferromagnetism were studied using first-principles calculations. A large tunneling magnetoresistance(TMR) of 725.07% was obtained in the MTJs based on monolayer MnSe2. Several schemes were proposed to improve the TMR of these devices. Moreover, the results of our non-equilibrium transport calculations showed that the large TMR was maintained in these devices under a finite bias.The transmission spectrum was analyzed according to the orbital components and the electronic structure of the monolayer XSe2(X = Mn, V). The results in this paper demonstrated that the MTJs based on a 2D ferromagnet with room-temperature ferromagnetism exhibited reliable performance. Therefore, such devices show the possibility for potential applications in spintronics.展开更多
The combination of ferromagnetic metal(FM)and semiconductor(SC)for spin injection was studied and demonstrated with FM-SC-FM junction.The semiconductor was chosen to be doped Indium-Tin-Oxide(ITO).Both ITO single-laye...The combination of ferromagnetic metal(FM)and semiconductor(SC)for spin injection was studied and demonstrated with FM-SC-FM junction.The semiconductor was chosen to be doped Indium-Tin-Oxide(ITO).Both ITO single-layer film and CoFe-ITO-CoFe junction were sputtering deposited.The ITO single-layer film was n-type with a small resistance of about 100Ω/Square.I-V curves and Magnetoresistance(MR)effect of the CoFe-ITO-CoFe junction were measured at room temperature and 77 K.Results show that the CoFe forms an ohmic contact to ITO film.But at low temperature,the I-V curves show a Schottky-like characteristic,which is strongly affect by applied magnetic field.The MR effect was measured to be 1%at 77 K,which indicates a spin injection into semiconductor to be realized in this sandwich junction.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474133 and 10674169).
文摘A junction composed of ultrathin La0.9Ca0.1MnO3+δ (LCMO) film and 1 wt.% Nb-doped SrTiO3 was fabricated and its magnetoresistance (MR) was studied and compared with LCMO film. It was found that the resistance of the junction has a similar dependence on magnetic field as that of the LCMO film: the curvature of R-H curves is upward above Curie temperature (Tc) and downward below TC. These behaviours strongly suggest that the rotation of ferromagnetic clusters in manganite also causes MR in the corresponding junction. This MR can be qualitatively understood by the change of the width of the barrier induced by the rotation of ferromagnetic clusters. These results suggest a possibility to obtain junctions with large low-field MR.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274108)
文摘We address velocity-modulation control of electron wave propagation in a normal/ferromagnetic/normal silicene junc- tion with local variation of Fermi velocity, where the properties of charge, valley, and spin transport through the junction are investigated. By matching the wavefunctions at the normal-ferromagnetic interfaces, it is demonstrated that the variation of Fermi velocity in a small range can largely enhance the total conductance while keeping the current nearly fully valley- and spin-polarized. Further, the variation of Fermi velocity in ferromagnetic silicene has significant influence on the valley and spin polarization, especially in the low-energy regime. It may drastically reduce the high polarizations, which can be realized by adjusting the local application of a gate voltage and exchange field on the junction.
基金Project supported by the Special Funds of the National Natural Science Foundation of China(Grant Nos.10847132 and 10847133)the Natural Science Foundation of Education Bureau of Jiangsu Province,China(Grant No.07KJD140024)
文摘We extend the Blonder, Tinkham and Klapwijk theory to the study of the inverse proximity effects in the normal mental/superconductor/ferromagnet structures. In the superconducting film, there are the gapless superconductivity and the spin-dependent density of states both within and without the energy gap. It indicates an appearance of the inverse-proximity-effect-induced ferromagnetism and a coexistence of ferromagnetism and superconductivity near the interface. The influence of exchange energy in the ferromagnet and barrier strength at the superconductor/ferromagnet interface on the inverse proximity effects is discussed.
文摘In this paper, the superconducting order parameter and the energy spectrum of the Bogoliubov excitations are obtained from the Bogoliubov-de Gennes (BdG) equation for a ferromagnetic superconductor (FS). Taking into account the rough interface scattering effect, we calculate the shot noise and the differential conductance of the normalmetal insulator ferromagnetic superconductor junction. It is shown that the exchange energy Eh in FS can lead to splitting of the differential shot noise peaks and the conductance peaks. The energy difference between the two splitting peaks is equal to 2Eh. The rough interface scattering strength results in descent of conductance peaks and the shot noise-to-current ratio but increases the shot noise.
文摘Spin dynamics in several different types of ferromagnetic metal (FM)/10-nm-thick n-type GaAs quantum well (QW) junctions is studied by means of time-resolved Kerr rotation measurements. Compared with the MnGa/insitu doped lO-nm-thick n-type GaAs QW junction, the spin lifetime of the MnGa/modulation-doped 10-nm-thick n-type GaAs QW junction is shorter by a factor of 6, consistent with the D'yakonov Perel' spin relaxation mechanism. Meanwhile, compared with the spin lifetime of the MnAs/in-situ doped 10-nm-thick n-type GaAs QW junction, the MnGa/in-situ doped 10-nm-thick n-type GaAs QW junction is of a spin lifetime longer by a factor of 4.2. The later observation is well explained by the Rashba effect in the presence of structure inversion asymmetry, which acts directly on photo-excited electron spins. We demonstrate that MnGa-like FM/in-situ doped 10-nm-thick n-type GaAs QW junctions, which possess relatively low interfaciai potential barriers, are able to provide long spin lifetimes.
文摘Nonequilibrium effect due to the imbalance in the number of the ? and ? spin electrons has been studied for the tunneling currents in the ferromagnet-insulator-superconductor (FIS) tunneling junctions within a phenomenological manner. It has been stated how the nonequilibrium effect should be observed in the spin-polarized quasiparticle tunneling currents, and pointed out that the detectable nonequilibrium effect could be found in the FIS tunneling junction at 77 K using HgBa2Ca2Cu3O8+? (Hg-1223) high-Tc superconductor rather than Bi2Sr2CaCu2O8+? (Bi-2212) one.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61571415 and 61622406)the National Key Research and Development Program of China(Grant No.2017YFA0207500)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)Beijing Academy of Quantum Information Sciences,China(Grant No.Y18G04)
文摘Two-dimensional(2D) magnetic crystals have attracted great attention due to their emerging new physical phenomena. They provide ideal platforms to study the fundamental physics of magnetism in low dimensions. In this research,magnetic tunneling junctions(MTJs) based on XSe2(X = Mn, V) with room-temperature ferromagnetism were studied using first-principles calculations. A large tunneling magnetoresistance(TMR) of 725.07% was obtained in the MTJs based on monolayer MnSe2. Several schemes were proposed to improve the TMR of these devices. Moreover, the results of our non-equilibrium transport calculations showed that the large TMR was maintained in these devices under a finite bias.The transmission spectrum was analyzed according to the orbital components and the electronic structure of the monolayer XSe2(X = Mn, V). The results in this paper demonstrated that the MTJs based on a 2D ferromagnet with room-temperature ferromagnetism exhibited reliable performance. Therefore, such devices show the possibility for potential applications in spintronics.
基金This project was financially supported by the Key Program of NSFC(No.90306015).
文摘The combination of ferromagnetic metal(FM)and semiconductor(SC)for spin injection was studied and demonstrated with FM-SC-FM junction.The semiconductor was chosen to be doped Indium-Tin-Oxide(ITO).Both ITO single-layer film and CoFe-ITO-CoFe junction were sputtering deposited.The ITO single-layer film was n-type with a small resistance of about 100Ω/Square.I-V curves and Magnetoresistance(MR)effect of the CoFe-ITO-CoFe junction were measured at room temperature and 77 K.Results show that the CoFe forms an ohmic contact to ITO film.But at low temperature,the I-V curves show a Schottky-like characteristic,which is strongly affect by applied magnetic field.The MR effect was measured to be 1%at 77 K,which indicates a spin injection into semiconductor to be realized in this sandwich junction.