期刊文献+
共找到168篇文章
< 1 2 9 >
每页显示 20 50 100
Ab initio nonadiabatic molecular dynamics study on spin–orbit coupling induced spin dynamics in ferromagnetic metals
1
作者 朱万松 郑镇法 +1 位作者 郑奇靖 赵瑾 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期156-163,共8页
Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics... Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems. 展开更多
关键词 nonadiabatic molecular dynamics spin dynamics spin–orbit coupling ferromagnetic metal
下载PDF
Metal-to-insulator transition in two-dimensional ferromagnetic monolayer induced by substrate
2
作者 Can Qi Jun Hu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期468-472,共5页
Two-dimensional (2D) ferromagnetic (FM) materials have great potential for applications in next-generation spin- tronic devices. Since most 2D FM materials come from van der Waals crystals, stabilizing them on a c... Two-dimensional (2D) ferromagnetic (FM) materials have great potential for applications in next-generation spin- tronic devices. Since most 2D FM materials come from van der Waals crystals, stabilizing them on a certain substrate without killing the ferromagnetism is still a challenge. Through systematic first-principles calculations, we proposed a new family of 2D FM materials which combines TaX (X= S, Se or Te) monolayer and A1203(0001) substrate. The TaX monolayers provide magnetic states and the A1203(0001) substrate stabilizes the former. Interestingly, the A1203(0001) substrate leads to a metal-to-insulator transition in the TaX monolayers and induces a band gap up to 303 meV. Our study paves the way to explore promising 2D FM materials for practical applications in spintronics devices. 展开更多
关键词 metal-to-insulator transition two-dimensional monolayer ferromagnetic material
下载PDF
Metal magnetic memory testing for early damage assessment in ferromagnetic materials 被引量:3
3
作者 董丽虹 徐滨士 +5 位作者 董世运 陈群志 王愈涯 张蕾 王丹 尹大伟 《Journal of Central South University》 SCIE EI CAS 2005年第S2期102-106,共5页
In order to investigate the physical mechanism of metal magnetic memory testing, both the influences of earth magnetic field and applied stress on magnetic domain structure were discussed. Static tension and fatigue t... In order to investigate the physical mechanism of metal magnetic memory testing, both the influences of earth magnetic field and applied stress on magnetic domain structure were discussed. Static tension and fatigue tests for low carbon steel plate specimens were carried out on hydraulic servo testing machine of MTS810 type and magnetic signals were measured during the processes by the type of EMS-2003 instrument. The results indicate that the initial magnetic signals of specimens are different before loading. The magnetic signals curves are transformed from initial random to regular pattern due to the effect of two types of loads. However, the shape and distribution of magnetic signal curves in the elastic region are different from that of plastic region in tension test. While in fatigue test those magnetic signals curves corresponding to different cycles are similar. The H_p(y) value of magnetic signals on the fracture zone increases dramatically at the breaking transient time and positive-negative magnetic poles occur on the two parts of fracture zone. 展开更多
关键词 metal MAGNETIC MEMORY testing ferromagnetic materials MAGNETIC LEAKAGE SIGNALS EARLY damage
下载PDF
Preparation of ferromagnetic metal fine fibers by organic gel-thermal reduction process 被引量:1
4
作者 曹凯 沈湘黔 +1 位作者 景茂祥 周建新 《Journal of Central South University of Technology》 EI 2007年第5期607-611,共5页
The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomp... The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermo-gravimetric/differential scanning calorimetry and scanning electron microscopy. The results show that spinnability of gel largely depends on molecular structure of metal-carboxylate complex that is a linear-type structure formed in the gel. As a result, the gels exhibit a good spinnability. Metal Ni, Co and Fe fine fibers are featured with diameters of around 1 μm and a high aspect ratio up to 1×106. 展开更多
关键词 ferromagnetic metal fiber organic gel thermal reduction SPINNABILITY
下载PDF
Coupling ferromagnetic ordering electron transfer channels and surface reconstructed active species for spintronic electrocatalysis of water oxidation 被引量:2
5
作者 Zexing He Xiaokang Liu +7 位作者 Minghui Zhang Lei Guo Muhammad Ajmal Lun Pan Chengxiang Shi Xiangwen Zhang Zhen-Feng Huang Ji-Jun Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期570-580,I0014,共12页
Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using model... Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using modeled ZnFe_(2-x)Ni_xO_(4)(0 ≤ x ≤ 0.4) spinel oxides, we aim to develop better OER electrocatalyst through combining the construction of ferromagnetic(FM) ordering channels and generation of highly active reconstructed species. The number of symmetry-breaking Fe–O–Ni structure links to the formation of FM ordering electron transfer channels. Meanwhile, as the number of Ni^(3+)increases, more ligand holes are formed, beneficial for redirecting surface reconstruction. The electro-activated ZnFe_(1.6)Ni_(0.4)O_(4) shows the highest specific activity, which is 13 and 2.5 times higher than that of ZnFe_(2)O_(4) and unactivated ZnFe_(1.6)Ni_(0.4)O_(4), and even superior to the benchmark IrO_(2) under the overpotential of 350 mV. Applying external magnetic field can make electron spin more aligned, and the activity can be further improved to 39 times of ZnFe_(2)O_(4). We propose that intriguing FM exchange-field interaction at FM/paramagnetic interfaces can penetrate FM ordering channels into reconstructed oxyhydroxide layers, thereby activating oxyhydroxide layers as spin-filter to accelerate spin-selective electron transfer. This work provides a new guideline to develop highly efficient spintronic catalysts for water oxidation and other spin-forbidden reactions. 展开更多
关键词 Oxygen evolution reaction Reconstruction mechanism metal oxyhydroxides Electron transfer channels ferromagnetic exchange-field penetration
下载PDF
Spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads
6
作者 闫从华 吴绍全 +1 位作者 黄睿 孙威立 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第1期296-302,共7页
We investigate the spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads in series. By means of the slave-boson mean-field approximation, we calculate the density of states in ... We investigate the spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads in series. By means of the slave-boson mean-field approximation, we calculate the density of states in the Kondo regime for two different configurations of the leads. It is found that the transport shows some remarkable properties depending on the spin-flip strength. These effects may be useful in exploiting the role of electronic correlation in spintronics. 展开更多
关键词 SPIN-FLIP double quantum dots half-metallic ferromagnetic leads
下载PDF
Nonequilibrium Effect in Ferromagnet-Insulator-Superconductor Tunneling Junction Currents
7
作者 Michihide Kitamura Kazuhiro Yamaki Akinobu Irie 《World Journal of Condensed Matter Physics》 CAS 2016年第3期169-176,共8页
Nonequilibrium effect due to the imbalance in the number of the ? and ? spin electrons has been studied for the tunneling currents in the ferromagnet-insulator-superconductor (FIS) tunneling junctions within a phenome... Nonequilibrium effect due to the imbalance in the number of the ? and ? spin electrons has been studied for the tunneling currents in the ferromagnet-insulator-superconductor (FIS) tunneling junctions within a phenomenological manner. It has been stated how the nonequilibrium effect should be observed in the spin-polarized quasiparticle tunneling currents, and pointed out that the detectable nonequilibrium effect could be found in the FIS tunneling junction at 77 K using HgBa2Ca2Cu3O8+? (Hg-1223) high-Tc superconductor rather than Bi2Sr2CaCu2O8+? (Bi-2212) one. 展开更多
关键词 Nonequilibrium Effect ferromagnet-insulator-Superconductor Tunneling junction Hg-1223 Bi-2212 Spin-Polarized Quasiparticle Tunneling
下载PDF
Charge regulation by ferromagnetic metal/LiF spin-polarized interface for high-performance Li metal anodes
8
作者 Ming-Yang Feng Shuang Zhou +7 位作者 Yi-Fang Zhang Ya-Ping Wang Chun-Yan Fu Jian-Wen Li Yuan-Lang Wan Zhi-Jia Zhang Yong Jiang An-Qiang Pan 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期995-1005,共11页
The interfacial characteristics of the Li metal anode(LMA)play a crucial role in its overall performance.Despite various materials being applied to modify the interface,a comprehensive understanding of their specific ... The interfacial characteristics of the Li metal anode(LMA)play a crucial role in its overall performance.Despite various materials being applied to modify the interface,a comprehensive understanding of their specific mechanisms remains to be investigated.Herein,we have prepared carbon cloth(CC)frameworks with their surfaces modified using ferromagnetic metal/LiF heterogeneous films(T^(M)-LiF-CC)as the substrate for LMA,which exhibit superior electrochemical performance.Utilizing ferromagnetic Co as a representative example,our study demonstrates that the enhanced performance of Co-LiF-CC,compared to bare CC,is attributed to the spinpolarized interface contributed by the Co/LiF heterostructure.Co and LiF play individual roles in redistributing electrons and Li^(+)to promote homogeneous Li deposition.Co nanoparticles play a crucial role in generating strong surface capacitance by storing electrons in spin-split bands,while LiF,with low surface diffusion barriers,ensures fast transportation of Li^(+).The Co-LiF-CC@Li electrodes deliver long lives of 7400 and 3600 h at 1 and 2 mA·cm^(-2)in symmetric cells,respectively;moreover,they enable full batteries with high and durable capacities,particularly when the N/P ratios are low(3.3 or even 1.7). 展开更多
关键词 Lithium metal anode Interfacial charge ferromagnetic metal Lithium fluoride Spin polarization
原文传递
Theoretical investigations of half-metallic ferromagnetism in new Half-Heusler YCrSb and YMnSb alloys using first-principle calculations 被引量:1
9
作者 M Atif Sattar Muhammad Rashid +3 位作者 M Raza Hashmi S A Ahmad Muhammad Imran Fayyaz Hussain 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期386-392,共7页
Structural,electronic,and magnetic properties of new predicted half-Heusler YCrSb and YMnSb compounds within the ordered MgAgAs Clb-type structure are investigated by employing first-principal calculations based on de... Structural,electronic,and magnetic properties of new predicted half-Heusler YCrSb and YMnSb compounds within the ordered MgAgAs Clb-type structure are investigated by employing first-principal calculations based on density functional theory.Through the calculated total energies of three possible atomic placements,we find the most stable structures regarding YCrSb and YMnSb materials,where Y,Cr(Mn),and Sb atoms occupy the(0.5,0.5,0.5),(0.25,0.25,0.25),and(0,0,0) positions,respectively.Furthermore,structural properties are explored for the non-magnetic and ferromagnetic and anti-ferromagnetic states and it is found that both materials prefer ferromagnetic states.The electronic band structure shows that YCrSb has a direct band gap of 0.78 eV while YMnSb has an indirect band gap of 0.40 eV in the majority spin channel.Our findings show that YCrSb and YMnSb materials exhibit half-metallic characteristics at their optimized lattice constants of 6.67 and 6.56 ,respectively.The half-metallicities associated with YCrSb and YMnSb are found to be robust under large in-plane strains which make them potential contenders for spintronic applications. 展开更多
关键词 electronic structures density functional theory metals and alloys other ferromagnetic metals and alloys
下载PDF
Half-metallic ferromagnetism in C-doped zinc-blende ZnO: A first-principles study 被引量:1
10
作者 但旭 姚凯伦 +1 位作者 高国营 马国强 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期467-470,共4页
We perform a first-principles study of electronic structure and magnetism of C-doped zinc-blende ZnO using the full-potential linearized augmented plane wave method. Results show that C-doped zinc-blende ZnO exhibits ... We perform a first-principles study of electronic structure and magnetism of C-doped zinc-blende ZnO using the full-potential linearized augmented plane wave method. Results show that C-doped zinc-blende ZnO exhibits half-metallic ferromagnetism with a stable ferromagnetic ground state. The calculated magnetic moment of the 32-atom supercell containing one C dopant is 2.00 μ B , and the C dopant contributes most. The calculated low formation energy suggests that C-doped zinc-blende ZnO is energetically stable. The hole-mediated double exchange mechanism can be used to explain the ferromagnetism in C-doped zinc-blende ZnO. 展开更多
关键词 half-metallic ferromagnetism FIRST-PRINCIPLES electronic structure
下载PDF
Magnetic properties of several potential rocksalt half-metallic ferromagnets based on the first-principles calculations 被引量:1
11
作者 刘俊 詹瑞 +1 位作者 李丽 董会宁 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期351-355,共5页
Several rocksalt Sr4X3N (X = O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their ma... Several rocksalt Sr4X3N (X = O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their magnetic properties, such as the half metallicity and the crystal-cell magnetic moments are investigated. The Sr4X3N possibly have higher Curie temperatures and have more stable half metallicity than the Sr4X3C. Their crystal-cell magnetic moments are all 1.00 μB. The crystal-cell magnetic moments and the half metallicity arise mainly from the N ions. The main mechanism is the strong covalent interaction leading to the sp2 hybridized orbitals in the Sr4X3N. Then two Sr-5s and three N-2p electrons enter into three sp2 hybridized orbitals. Among these five electrons, four electrons are paired and one is unpaired, so there are three spin-up electrons and two spin-down electrons in these sp2 hybridized orbitals. 展开更多
关键词 half-metallic ferromagnets first-principles calculations crystal-cell magnetic moments
下载PDF
Unusual gradient stress induced superior room-temperature plasticity in brittle ferromagnetic bulk metallic glass
12
作者 Meng Wang Weiming Yang +8 位作者 Si Lan Zongzhen Li Qianqian Wang Wenyu Li Jing Tao Jing Zhou Qiang Li Haishun Liu Akihisa Inoue 《Journal of Materials Science & Technology》 SCIE EI CAS 2024年第11期70-79,共10页
Ferromagnetic bulk metallic glasses(FBMGs)possess excellent soft magnetic properties,good corrosion resistance,and high strength.Unfortunately,their commercial utility is limited by their brittleness.In this work,we r... Ferromagnetic bulk metallic glasses(FBMGs)possess excellent soft magnetic properties,good corrosion resistance,and high strength.Unfortunately,their commercial utility is limited by their brittleness.In this work,we report the enhancement in the room-temperature plasticity during the compression(25%)and bending flexibility of Fe_(74)Mo_(6)P_(13)C_(7) FBMG by using water quenching.The high-energy synchrotron X-ray measurements,high-resolution transmission electron microscopy,three-dimensional X-ray microtomog-raphy,and finite element simulation were performed to reveal the origin.It was found that the M-shape profile of residual stress improves the mechanical properties of FBMGs,particularly their plasticity.The reversal of the heat-transfer coefficient and cooling rate from the'vapor blanket'to'nucleate boiling'transition during water quenching processing is the main cause of the unusual profile of residual stress in glassy cylinders.Encouraged by the progress in developing flexible silicate glasses,this work highlights a processing method to improve plasticity and surmount technical barriers for the commercialization of FBMGs. 展开更多
关键词 ferromagnetic bulk metallic glasses Plasticity Flexibility Residual stress
原文传递
Half-metallic ferromagneticWeyl fermions related to dynamic correlations in the zinc-blende compound VAs
13
作者 Xianyong Ding Haoran Wei +3 位作者 Ruixiang Zhu Xiaoliang Xiao Xiaozhi Wu Rui Wang 《Chinese Physics B》 SCIE EI CAS 2024年第9期528-533,共6页
The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic... The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs,which was deemed as a half-metallic ferromagnet related to dynamic correlations.Based on the combination of density functional theory and dynamical mean field theory,we uncover that the half-metallic ferromagnet VAs exhibits attractive Weyl semimetallic behaviors which are very close to the Fermi level in the DFT+U regime with effect U values ranging from 1.5 eV to 2.5 eV.Meanwhile,we also investigate the magnetization-dependent topological properties;the results show that the change of magnetization directions only slightly affects the positions of Weyl points,which is attributed to the weak spin–orbital coupling effects.The topological surface states of VAs projected on semi-infinite(001)and(111)surfaces are investigated.The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces.Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects in the effective U values range from 1.5 eV to 2.5 eV. 展开更多
关键词 density functional theory Weyl semimetal dynamical mean field theory half metallic ferromagnet
下载PDF
Effect on Defect in N or F-Doped Ferromagnetic Zn<sub>1-x</sub>Cu<sub>x</sub>O: First-Principles Study
14
作者 Byung-Sub Kang Kwang-Pyo Chae Haeng-Ki Lee 《Materials Sciences and Applications》 2014年第14期1004-1010,共7页
We investigated the electronic and magnetic properties for O or Zn defect of (Cu, N) or (Cu, F)-co- doped ZnO with the concentration of 2.77% - 8.33% by using the first-principles calculations. The ferromagnetic coupl... We investigated the electronic and magnetic properties for O or Zn defect of (Cu, N) or (Cu, F)-co- doped ZnO with the concentration of 2.77% - 8.33% by using the first-principles calculations. The ferromagnetic coupling of Cu atoms in (Cu, N)-codoped ZnO can be attributed to the hole-mediated double-exchange through the strong 2p-3d coupling between Cu and neighboring O (or N) atoms. The ferromagnetism in Cu-doped ZnO is controllable by changing the carrier density. The Cu magnetic moment in low Cu concentration (2.77%) is increased by the N-doping, while for the F-doping it decreases. For two Cu atoms of Zn0.9445Cu0.0555O with O vacancy, the antiferromagnetic state is more energetically favorable than the ferromagnetic state. 展开更多
关键词 The p-Type ZnO: CU Carrier Doping ferromagnetic HALF-metalLIC First-Principles
下载PDF
Tunnel magnetoresistance (TMR) in ferromagnetic metalinsulator granular films 被引量:1
15
作者 Haili Bai Enyong Jiang 《Chinese Science Bulletin》 SCIE EI CAS 2001年第7期529-537,共9页
We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal-insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling betwee... We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal-insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal particles. The theoretical and experimental results including electrical resistivity, magnetoresistance and their temperature dependence are described. Limitations to the applications of the ferromagnetic metal-insulator granular films are also discussed. Additionally, a brief survey of another two magnetic properties, high- frequency property and giant Hall effect (GHE) associated strongly with the granular structures is also presented. 展开更多
关键词 ferromagnetic metal-insulator GRANULAR thin films tunnel MAGNETORESISTANCE spin-dependent tunneling high-frequency property giant HALL effect.
原文传递
Metallic and ferromagnetic MoS2 nanobelts with vertically aligned edges 被引量:2
16
作者 Guanchen Xu Xinsheng Wang +5 位作者 Yupeng Sun Xiao Chen Jingying Zheng Lifei Sun Liying Jiao Jinghong Li 《Nano Research》 SCIE EI CAS CSCD 2015年第9期2946-2953,共8页
Edge effects are predicted to significantly impact the properties of low dimensional materials with layered structures. The synthesis of low dimensional materials with copious edges is desired for exploring the effect... Edge effects are predicted to significantly impact the properties of low dimensional materials with layered structures. The synthesis of low dimensional materials with copious edges is desired for exploring the effects of edges on the band structure and properties of these materials. Here we developed an approach for synthesizing MoS2 nanobelts terminated with vertically aligned edges by sulfurizing hydrothermally synthesized MoO3 nanobelts in the gas phase through a kinetically driven process; we then investigated the electrical and magnetic properties of these metastable materials. These edge-terminated MoS2 nanobelts were found to be metallic and ferromagnetic, and thus dramatically different from the semiconducting and nonmagnetic two-dimensional (2D) and three-dimensional (3D) 2H-MoS2 materials. The transitions in electrical and magnetic properties elucidate the fact that edges can tune the properties of low dimensional materials. The unique structure and properties of this one-dimensional (1D) MoS2 material will enable its applications in electronics, spintronics, and catalysis. 展开更多
关键词 MOS2 two-dimensional (2D)atomic crystal nanobelt edge effect metallic ferromagnetic
原文传递
The atlas of ferroicity in two-dimensional MGeX_(3) family:Room-temperature ferromagnetic half metals and unexpected ferroelectricity and ferroelasticity 被引量:1
17
作者 Kuan-Rong Hao Xing-Yu Ma +3 位作者 Hou-Yi Lyu Zhen-Gang Zhu Qing-Bo Yan Gang Su 《Nano Research》 SCIE EI CSCD 2021年第12期4732-4739,共8页
Two-dimensional(2D)ferromagnetic and ferroelectric materials attract unprecedented attention due to the spontaneous-symmetry-breaking induced novel properties and multifarious potential applications.Here we systematic... Two-dimensional(2D)ferromagnetic and ferroelectric materials attract unprecedented attention due to the spontaneous-symmetry-breaking induced novel properties and multifarious potential applications.Here we systematically investigate a large family(148)of 2D MGeX3(M=metal elements,X=O/S/Se/Te)by means of the high-throughput first-principles calculations,and focus on their possible ferroic properties including ferromagnetism,ferroelectricity,and ferroelasticity.We discover eight stable 2D ferromagnets including five semiconductors and three half-metals,212D antiferromagnets,and 11 stable 2D ferroelectric semiconductors including two multiferroic materials.Particularly,MnGeSe3 and MnGeTe3 are predicted to be room-temperature 2D ferromagnetic half metals with Tc of 490 and 308 K,respectively.It is probably for the first time that ferroelectricity is uncovered in 2D MGeX3 family,which derives from the spontaneous symmetry breaking induced by unexpected displacements of Ge-Ge atomic pairs,and we also reveal that the electric polarizations are in proportion to the ratio of electronegativity of X and M atoms,and IVB group metal elements are highly favored for 2D ferroelectricity.Magnetic tunnel junction and water-splitting photocatalyst based on 2D ferroic MGeX3 are proposed as examples of wide potential applications.The atlas of ferroicity in 2D MGeX3 materials will spur great interest in experimental studies and would lead to diverse applications. 展开更多
关键词 two-dimensional materials ferroicity FERROELECTRICITY FERROELASTICITY ferromagnetic half metal
原文传递
Theoretical Study on the Ferromagnetism of Cr-doped In_2O_3
18
作者 刘三兵 李俊篯 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第3期360-364,共5页
Density functional theory (DFT) calculations are performed to investigate the electronic structure and ferromagnetism of (In, Cr)2O3. The densities of states suggest that the Cr dopants provide nearly 100% polariz... Density functional theory (DFT) calculations are performed to investigate the electronic structure and ferromagnetism of (In, Cr)2O3. The densities of states suggest that the Cr dopants provide nearly 100% polarization of the conduction carriers and the ferromagnetic ground state in Cr-doped In2O3 can be explained from p-d hybridization mechanism. The calculation results also show that the ferromagnetism is strengthened in the presence of oxygen vacancy. 展开更多
关键词 diluted magnetic semiconductors density functional theory (DFT) half-metallic ferromagnetic (FM) antiferromagnetic (AFM)
下载PDF
CrO_(2)单层:一种兼具高居里温度和半金属特性的二维铁磁体
19
作者 刘冰心 李宗良 《物理学报》 SCIE EI CAS CSCD 北大核心 2024年第10期278-286,共9页
半金属铁磁体在费米能级附近具有特殊的能带结构,电子极化率可高达100%,在自旋电子学领域备受关注.但是大部分铁磁半金属材料的居里温度远低于室温,这大大限制了二维铁磁半金属材料的实际应用.因此寻找具有高居里温度的半金属铁磁体是... 半金属铁磁体在费米能级附近具有特殊的能带结构,电子极化率可高达100%,在自旋电子学领域备受关注.但是大部分铁磁半金属材料的居里温度远低于室温,这大大限制了二维铁磁半金属材料的实际应用.因此寻找具有高居里温度的半金属铁磁体是一项具有挑战性的工作.本文基于密度泛函理论框架下的第一性原理方法,研究了过渡金属氧化物CrO_(2)单层的晶体结构、电子特性、基态磁性和铁磁相变.形成能计算、声子谱计算和分子动力学模拟表明CrO_(2)具有动力学稳定性和热稳定性,弹性常数计算表明CrO_(2)具有力学稳定性.基于GGA+U和SCAN方法的自旋极化计算表明CrO_(2)单层的磁基态是铁磁态.采用GGA+U方法计算了CrO_(2)的电子态密度和能带结构,CrO_(2)被确认为一种宽带隙的二维铁磁半金属.运用蒙特卡罗模拟方法求解Heisenberg模型,得到CrO_(2)单层是一种居里温度超过400 K的二维本征半金属铁磁体.CrO_(2)单层的高居里温度在二维铁磁材料中并不多见,在半金属材料中更为稀少,这将使它成为制备自旋电子器件和研究自旋量子效应的理想材料. 展开更多
关键词 过渡金属氧化物 二维铁磁半金属 居里温度 第一性原理
下载PDF
二维过渡金属硫族化物MX_(2)-MX-MX_(2)(M=V,Cr,Mn,Fe;X=S,Se,Te)的计算研究
20
作者 丁文杰 谢文辉 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期45-53,共9页
采用基于密度泛函理论(density functional theory,DFT)的第一性原理计算,研究了二维过渡金属硫族化合物MX_(2)-MX-MX_(2)(M=V,Cr,Mn,Fe;X=S,Se,Te)材料的晶体结构、稳定性、电子结构和磁性质,并对这些材料的磁耦合机制进行了分析.计算... 采用基于密度泛函理论(density functional theory,DFT)的第一性原理计算,研究了二维过渡金属硫族化合物MX_(2)-MX-MX_(2)(M=V,Cr,Mn,Fe;X=S,Se,Te)材料的晶体结构、稳定性、电子结构和磁性质,并对这些材料的磁耦合机制进行了分析.计算结果表明,这些化合物的形成能均为负值,说明这些化合物有可能被实验合成.其中,MnS_(2)-MnS-MnS_(2)和MnSe_(2)-MnSe-MnSe_(2)呈现出铁磁半金属性质,而CrS_(2)-CrS-CrS_(2)在外加应力下能够转变成铁磁半金属. 展开更多
关键词 第一性原理计算 二维材料 铁磁半金属
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部