The interfacial magnetoelectric interaction originating from multi-orbital hopping processes with ferroelectricassociated vector potential is theoretically investigated for complex-oxide composite structures.Large mis...The interfacial magnetoelectric interaction originating from multi-orbital hopping processes with ferroelectricassociated vector potential is theoretically investigated for complex-oxide composite structures.Large mismatch in the electrical permittivity of the ferroelectric and ferromagnetic materials gives rise to giant anisotropic magnetoelectric effects at their interface.Our study reveals a strong linear dynamic magnetoelectric coupling which genuinely results in electric control of magnetic susceptibility.The constitutive conditions for negative refractive index of multiferroic composites are determined by the analysis of light propagation.展开更多
Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The sin...Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n-n junction and n-p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0 ≤ 0 〈π/2 and r/2 〈 0 ≤ π, the transmission probability of the n-n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n-p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs.展开更多
Exchange coupling between topological insulator and ferromagnetic insulator through proximity effect is strongly attractive for both fundamental physics and technological applications. Here we report a comprehensive i...Exchange coupling between topological insulator and ferromagnetic insulator through proximity effect is strongly attractive for both fundamental physics and technological applications. Here we report a comprehensive investigation on the growth behaviors of prototype topological insulator Bi2Se3 thin film on a single-crystalline LaCoO3 thin film on SrTiO3 substrate, which is a strain-induced ferromagnetic insulator. Different from the growth on other substrates, the Bi2Se3 films with highest quality on LaCoO3 favor a relatively low substrate temperature during growth. As a result, an inverse dependence of carrier mobility with the substrate temperature is found. Moreover, the magnetoresistance and coherence length of weak antilocalization also have a similar inverse dependence with the substrate temperature, as revealed by the magnetotransport measurements. Our experiments elucidate the special behaviors in Bi2Se3/LaCoO3 heterostructures, which provide a good platform for exploring related novel quantum phenomena, and are inspiring for device applications.展开更多
The effect of the negative differential conductance of a ferromagnetic barrier on the surface of a topological insulat( is theoretically investigated. Due to the changes of the shape and position of the Fermi surface...The effect of the negative differential conductance of a ferromagnetic barrier on the surface of a topological insulat( is theoretically investigated. Due to the changes of the shape and position of the Fermi surfaces in the ferromagnetic barrie the transport processes can be divided into three kinds: the total, partial, and blockade transmission mechanisms. The bias voltage can give rise to the transition of the transport processes from partial to blockade transmission mechanisms, which results in a considerable effect of negative differential conductance. With appropriate structural parameters, the currenl voltage characteristics show that the minimum value of the current can reach to zero in a wide range of the bias voltag and then a large peak-to-valley current ratio can be obtained.展开更多
We have studied the quasiparticle transport in quantum-wire /ferromagnetic-insulator/d wave super- conductor Junction (q/FI/d) in the framework of the Blonder-Tinkham-Klapwijk model. We calculate the tunneling condu...We have studied the quasiparticle transport in quantum-wire /ferromagnetic-insulator/d wave super- conductor Junction (q/FI/d) in the framework of the Blonder-Tinkham-Klapwijk model. We calculate the tunneling conductance in q/FI/d as a function of the bias voltage at zero temperature and finite temperature based on Bogoliubov- de Gennes equations. Different from the case in normal-metal/insulator/d wave superconductor Junctions, the zero-bias conductance peaks vanish for the single-mode case. The tunneling conductance spectra depend on the magnitude of the exchange interaction at the ferromagnetic-insulator.展开更多
We should add the following acknowledge:Jing Teng thanks the support from the Youth Innovation Promotion Association Project,Chinese Academy of Sciences.
Two-dimensional (2D) ferromagnetic (FM) materials have great potential for applications in next-generation spin- tronic devices. Since most 2D FM materials come from van der Waals crystals, stabilizing them on a c...Two-dimensional (2D) ferromagnetic (FM) materials have great potential for applications in next-generation spin- tronic devices. Since most 2D FM materials come from van der Waals crystals, stabilizing them on a certain substrate without killing the ferromagnetism is still a challenge. Through systematic first-principles calculations, we proposed a new family of 2D FM materials which combines TaX (X= S, Se or Te) monolayer and A1203(0001) substrate. The TaX monolayers provide magnetic states and the A1203(0001) substrate stabilizes the former. Interestingly, the A1203(0001) substrate leads to a metal-to-insulator transition in the TaX monolayers and induces a band gap up to 303 meV. Our study paves the way to explore promising 2D FM materials for practical applications in spintronics devices.展开更多
This paper investigates the effect of Dresselhaus spin orbit coupling on the spin-transport properties of ferromagnet/insulator/semiconductor/insulator/ferromagnet double-barrier structures. The influence of the thick...This paper investigates the effect of Dresselhaus spin orbit coupling on the spin-transport properties of ferromagnet/insulator/semiconductor/insulator/ferromagnet double-barrier structures. The influence of the thickness of the insulator between the ferromagnet and the semiconductor on the polarization is also considered. The obtained results indicate that (i) the polarization can be enhanced by reducing the insulator layers at zero temperature, and (ii) the tunnelling magnetoresistance inversion can be illustrated by the influence of the Dresselhaus spin-orbit coupling effect in the double-barrier structure. Due to the Dresselhaus spin-orbit coupling effect, the tunnelling magnetoresistance inversion occurs when the energy of a localized state in the barrier matches the Fermi energy EF of the ferromagnetic electrodes.展开更多
Cobalt-doped Bi2Se3 topological insulators have been grown though melt-grown reaction. The Bi2Se3 matrix is diamagnetic and doped sample is a superposition of ferromagnetism (FM) and paramagnetism (PM) behavior at...Cobalt-doped Bi2Se3 topological insulators have been grown though melt-grown reaction. The Bi2Se3 matrix is diamagnetic and doped sample is a superposition of ferromagnetism (FM) and paramagnetism (PM) behavior at low tem- perature. The values of Msmol, Hc, and Mr increase as the Co concentration increases. Two possible explanations have been proposed for the origin of ferromagnetism in Co-doped Bi2Se3. One is the magnetic ordering from nanoclusters of Co-Se compound in the crystals, and the other is Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic impurities.展开更多
The Josephson currents in s-wave superconductor/ferromagnet insulator/p-wave superconductor(s/FI/p) junctions are calculated as a function of temperature and the phase taking into account the roughness scattering ef...The Josephson currents in s-wave superconductor/ferromagnet insulator/p-wave superconductor(s/FI/p) junctions are calculated as a function of temperature and the phase taking into account the roughness scattering effect at interface. The phase dependence of the Josephson current I (φ) between s-wave and px-wave superconductor is predicted to be sin(2φ). The ferromagnet scattering effect, the barrier strength, and the roughness strength at interface suppress the dc currents in s/FI/p junction.展开更多
Nonequilibrium effect due to the imbalance in the number of the ? and ? spin electrons has been studied for the tunneling currents in the ferromagnet-insulator-superconductor (FIS) tunneling junctions within a phenome...Nonequilibrium effect due to the imbalance in the number of the ? and ? spin electrons has been studied for the tunneling currents in the ferromagnet-insulator-superconductor (FIS) tunneling junctions within a phenomenological manner. It has been stated how the nonequilibrium effect should be observed in the spin-polarized quasiparticle tunneling currents, and pointed out that the detectable nonequilibrium effect could be found in the FIS tunneling junction at 77 K using HgBa2Ca2Cu3O8+? (Hg-1223) high-Tc superconductor rather than Bi2Sr2CaCu2O8+? (Bi-2212) one.展开更多
Superconductivity beyond electron-phonon mechanism is always twisted with magnetism. Based on a new field-effect transistor with solid ion conductor as the gate dielectric(SIC-FET), we successfully achieve an electric...Superconductivity beyond electron-phonon mechanism is always twisted with magnetism. Based on a new field-effect transistor with solid ion conductor as the gate dielectric(SIC-FET), we successfully achieve an electric-field-controlled phase transition between superconductor and ferromagnetic insulator in(Li,Fe)OHFeSe. A dome-shaped superconducting phase with optimal T_c of 43K is continuously tuned into a ferromagnetic insulating phase, which exhibits an electric-field-controlled quantum critical behavior. The origin of the ferromagnetism is ascribed to the order of the interstitial Fe ions expelled from the(Li,Fe)OH layers by gating-controlled Li injection. These surprising findings offer a unique platform to study the relationship between superconductivity and ferromagnetism in Fe-based superconductors. This work also demonstrates the superior performance of the SIC-FET in regulating physical properties of layered unconventional superconductors.展开更多
We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal-insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling betwee...We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal-insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal particles. The theoretical and experimental results including electrical resistivity, magnetoresistance and their temperature dependence are described. Limitations to the applications of the ferromagnetic metal-insulator granular films are also discussed. Additionally, a brief survey of another two magnetic properties, high- frequency property and giant Hall effect (GHE) associated strongly with the granular structures is also presented.展开更多
Quantum Hall effect (QHE), as a class of quantum phenomena that occur in macroscopic scale, is one of the most important topics in condensed matter physics. It has long been expected that QHE may occur without Landa...Quantum Hall effect (QHE), as a class of quantum phenomena that occur in macroscopic scale, is one of the most important topics in condensed matter physics. It has long been expected that QHE may occur without Landau levels so that neither external magnetic field nor high sample mobility is required for its study and application, Such a QHE free of Landau levels, can appear in topological insulators (TIs) with ferromagnetism as the quantized version of the anomalous Hall effect, i.e., quantum anomalous Hall (QAH) effect. Here we review our recent work on experimental realization of the QAH effect in magnetically doped TIs. With molecular beam epitaxy, we prepare thin films of Cr-doped (Bi,Sb)2Te3 TIs with well- controlled chemical potential and long-range ferromagnetic order that can survive the insulating phase. In such thin films, we eventually observed the quantization of the Hall resistance at h/e2 at zero field, accompanied by a considerable drop in the longitudinal resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall resistance remains at the quantized value. The realization of the QAH effect provides a foundation for many other novel quantum phenomena predicted in TIs, and opens a route to practical applications of quantum Hall physics in low-power-consumption electronics.展开更多
High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surfac...High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surface states are insensitive to Cr doping, and a perfect robust long-range ferromagnetic order is unveiled in epitaxial Sb2 xCrxTe3 films. The anomalous Hall effect is modulated by applying a bottom gate, contrary to the ferromagnetism in conventional diluted magnetic semiconductors (DMSs), here the coercivity field is not significantly changed with decreasing cartier density. Carrier-independent ferromag- netism heralds Sbz_xCrxTe3 films as the base candidate TI material to realize the quantum anomalous Hall (QAH) effect. These results also indicate the potential of controlling anomalous Hall voltage in future TI-based magneto-electronics and spintronics.展开更多
The use of the internal magnetic field of ferromagnets can effectively promote charge separation and transfer(CST)in photoelectrochemical energy conversion.However,photoelectrochemical materials with a ferromagnetic f...The use of the internal magnetic field of ferromagnets can effectively promote charge separation and transfer(CST)in photoelectrochemical energy conversion.However,photoelectrochemical materials with a ferromagnetic field are scarce,and the internal magnetic field is negligible in nonferromagnetic mate-rials.To address this issue,we propose a rational method for preparing ferromagnetic TiO_(2)powder using controllable oxygen vacancies in anatase TiO_(2)with co-exposed{001}and{101}facets.Accordingly,an ex-cellent saturation magnetisation of 0.0014 emu/g in TiO_(2)is achieved owing to an asymmetric and uneven charge distribution.Compared with that of nonferromagnetic TiO_(2),the efficiency of photocatalytic hydro-gen generation of ferromagnetic TiO_(2)is improved by 0.64 times.The enhancement of photocatalytic hy-drogen generation is due to the different forces exerted on the electrons and holes in the magnetic field,which significantly improve the photogenerated CST efficiency of ferromagnetic TiO_(2).This result high-lights the significant role of the synergistic regulation of the crystal structure and defects in regulating the ferromagnetic characteristics of materials.The findings of this study provide guidance for leveraging point defects to promote CST for high-efficiency solar-energy conversion systems.展开更多
Magnetically doped topological insulator(TI) thin films and related heterostructures have been extensively studied for years due to their exotic quantum transport properties and potential applications in low-dissipati...Magnetically doped topological insulator(TI) thin films and related heterostructures have been extensively studied for years due to their exotic quantum transport properties and potential applications in low-dissipation electronic devices and quantum computation.The selection of magnetic dopants is crucial to realize a high-quality magnetic TI with a robust ferromagnetic ordering and a preserved topological band structure.In this paper,we briefly review the recent magnetic domain imaging works in vanadium-doped magnetic topological insulator thin films and heterostructures.Using cryogenic magnetic force microscopy and in situ transport measurements,a ferromagnetic domain behavior has been demonstrated in V-doped Sb2Te3(ST) and Cr,V co-doped(Bi,Sb)2Te3(BST) thin films.The direct visualization of long-range ferromagnetic ordering in a quantum anomalous Hall(QAH) system sheds light on enhancing the QAH temperature by improving the ferromagnetism.Taking advantage of the different coercivity of Cr-and V-doped BST films,an axion insulating state has been observed in Cr-doped BST/BST/V-doped BST sandwich heterostructures.The antiparallel magnetization alignment,which is the key ingredient for realization of axion insulating state,has been directly visualized via magnetic imaging at various magnetic fields.The V-doped ST/ST heterostructures also provide a platform for Berry phase engineering in momentum space.By suppressing the anomalous Hall effect in such heterostructures,an intrinsic topological Hall effect can be revealed,which resolved the long-term puzzle of the origin of THE in the ultrathin ferromagnetic thin films and two-dimensional ferromagnets.The review of magnetic domain imaging in vanadium-doped topological insulators and heterostructures inspires further exploration of quantum transport properties in magnetic topological insulators and deepens the understanding of the interplay between the magnetic ordering and topological electronic band structures in magnetic TIs and beyond.展开更多
In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. He...In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. Here, utilizing highly sensitive susceptometry of scanning superconducting quantum interference device microscopy, we probe the spin correlations of ABC-stacked Cr Br3under zero magnetic field. We identify a plateau feature in susceptibility above the critical temperature(TC) in thick samples.It signifies a crossover regime induced by the competition between easy-plane intralayer exchange anisotropy versus uniaxial interlayer anisotropy. The evolution of the critical behavior from the bulk to 2D shows that the competition between the anisotropies is magnified in the reduced dimension. It leads to a strongly frustrated ferromagnetic transition in the bilayer with fluctuation on the order of TC, which is distinct from both the monolayer and the bulk. Our observation demonstrates unconventional 2D critical behavior on a honeycomb lattice.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474138 and 11834005)the Fund from the Ministry of Science and Technology of China(Grant No.CN-SK-8-4)+1 种基金the Science Foundation from the Slovak Academy of Sciences(Grant No.2/0059/17)the Science Fund from the Slovak Research and Development Agency(Grant No.APVV SK-CN-2017-0004)
文摘The interfacial magnetoelectric interaction originating from multi-orbital hopping processes with ferroelectricassociated vector potential is theoretically investigated for complex-oxide composite structures.Large mismatch in the electrical permittivity of the ferroelectric and ferromagnetic materials gives rise to giant anisotropic magnetoelectric effects at their interface.Our study reveals a strong linear dynamic magnetoelectric coupling which genuinely results in electric control of magnetic susceptibility.The constitutive conditions for negative refractive index of multiferroic composites are determined by the analysis of light propagation.
基金supported by the National Natural Science Foundation of China(Grant Nos.11264013 and 11147021)the Hunan Provincial Natural Science Foundation of China(Grant No.12JJ4003)the Research Program for Employee of Jishou University,China(Grant No.jsdxkyzz201005)
文摘Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n-n junction and n-p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0 ≤ 0 〈π/2 and r/2 〈 0 ≤ π, the transmission probability of the n-n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n-p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs.
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFA0300904 and 2016YFA0202301)the National Natural Science Foundation of China(Grant Nos.11334011,11674366,11674368,and 11761141013)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB07010200 and XDPB06)
文摘Exchange coupling between topological insulator and ferromagnetic insulator through proximity effect is strongly attractive for both fundamental physics and technological applications. Here we report a comprehensive investigation on the growth behaviors of prototype topological insulator Bi2Se3 thin film on a single-crystalline LaCoO3 thin film on SrTiO3 substrate, which is a strain-induced ferromagnetic insulator. Different from the growth on other substrates, the Bi2Se3 films with highest quality on LaCoO3 favor a relatively low substrate temperature during growth. As a result, an inverse dependence of carrier mobility with the substrate temperature is found. Moreover, the magnetoresistance and coherence length of weak antilocalization also have a similar inverse dependence with the substrate temperature, as revealed by the magnetotransport measurements. Our experiments elucidate the special behaviors in Bi2Se3/LaCoO3 heterostructures, which provide a good platform for exploring related novel quantum phenomena, and are inspiring for device applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11104059 and 61176089)
文摘The effect of the negative differential conductance of a ferromagnetic barrier on the surface of a topological insulat( is theoretically investigated. Due to the changes of the shape and position of the Fermi surfaces in the ferromagnetic barrie the transport processes can be divided into three kinds: the total, partial, and blockade transmission mechanisms. The bias voltage can give rise to the transition of the transport processes from partial to blockade transmission mechanisms, which results in a considerable effect of negative differential conductance. With appropriate structural parameters, the currenl voltage characteristics show that the minimum value of the current can reach to zero in a wide range of the bias voltag and then a large peak-to-valley current ratio can be obtained.
基金The project supported by the Natural Science Foundation of the Education Committee of Jiangsu Province of China under Grant No.06KJB140009
文摘We have studied the quasiparticle transport in quantum-wire /ferromagnetic-insulator/d wave super- conductor Junction (q/FI/d) in the framework of the Blonder-Tinkham-Klapwijk model. We calculate the tunneling conductance in q/FI/d as a function of the bias voltage at zero temperature and finite temperature based on Bogoliubov- de Gennes equations. Different from the case in normal-metal/insulator/d wave superconductor Junctions, the zero-bias conductance peaks vanish for the single-mode case. The tunneling conductance spectra depend on the magnitude of the exchange interaction at the ferromagnetic-insulator.
文摘We should add the following acknowledge:Jing Teng thanks the support from the Youth Innovation Promotion Association Project,Chinese Academy of Sciences.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574223)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20150303)the Jiangsu Specially-Appointed Professor Program of Jiangsu Province,China
文摘Two-dimensional (2D) ferromagnetic (FM) materials have great potential for applications in next-generation spin- tronic devices. Since most 2D FM materials come from van der Waals crystals, stabilizing them on a certain substrate without killing the ferromagnetism is still a challenge. Through systematic first-principles calculations, we proposed a new family of 2D FM materials which combines TaX (X= S, Se or Te) monolayer and A1203(0001) substrate. The TaX monolayers provide magnetic states and the A1203(0001) substrate stabilizes the former. Interestingly, the A1203(0001) substrate leads to a metal-to-insulator transition in the TaX monolayers and induces a band gap up to 303 meV. Our study paves the way to explore promising 2D FM materials for practical applications in spintronics devices.
基金supported by the National Natural Science Foundation of China (Grant No 10674040)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20060094002)
文摘This paper investigates the effect of Dresselhaus spin orbit coupling on the spin-transport properties of ferromagnet/insulator/semiconductor/insulator/ferromagnet double-barrier structures. The influence of the thickness of the insulator between the ferromagnet and the semiconductor on the polarization is also considered. The obtained results indicate that (i) the polarization can be enhanced by reducing the insulator layers at zero temperature, and (ii) the tunnelling magnetoresistance inversion can be illustrated by the influence of the Dresselhaus spin-orbit coupling effect in the double-barrier structure. Due to the Dresselhaus spin-orbit coupling effect, the tunnelling magnetoresistance inversion occurs when the energy of a localized state in the barrier matches the Fermi energy EF of the ferromagnetic electrodes.
基金supported by the Program of International S&T Cooperation(Grant No.2013DFA51050)the National Magnetic Confinement Fusion Science Programof China(Grant No.2011GB112001)+2 种基金the Science Foundation of Sichuan Province,China(Grant Nos.2011JY0031 and 2011JY0130)the National NaturalScience Foundation of China(Grant Nos.51271155 and 51002125)the Fundamental Research Funds for the Central Universities of China(GrantNos.SWJTU2682013CX005 and SWJTU12CX018)
文摘Cobalt-doped Bi2Se3 topological insulators have been grown though melt-grown reaction. The Bi2Se3 matrix is diamagnetic and doped sample is a superposition of ferromagnetism (FM) and paramagnetism (PM) behavior at low tem- perature. The values of Msmol, Hc, and Mr increase as the Co concentration increases. Two possible explanations have been proposed for the origin of ferromagnetism in Co-doped Bi2Se3. One is the magnetic ordering from nanoclusters of Co-Se compound in the crystals, and the other is Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic impurities.
基金The project supported by the Natural Science Foundation of the Education Commission 0f Jiangsu Province of China under Grant No. 06KJB140009
文摘The Josephson currents in s-wave superconductor/ferromagnet insulator/p-wave superconductor(s/FI/p) junctions are calculated as a function of temperature and the phase taking into account the roughness scattering effect at interface. The phase dependence of the Josephson current I (φ) between s-wave and px-wave superconductor is predicted to be sin(2φ). The ferromagnet scattering effect, the barrier strength, and the roughness strength at interface suppress the dc currents in s/FI/p junction.
文摘Nonequilibrium effect due to the imbalance in the number of the ? and ? spin electrons has been studied for the tunneling currents in the ferromagnet-insulator-superconductor (FIS) tunneling junctions within a phenomenological manner. It has been stated how the nonequilibrium effect should be observed in the spin-polarized quasiparticle tunneling currents, and pointed out that the detectable nonequilibrium effect could be found in the FIS tunneling junction at 77 K using HgBa2Ca2Cu3O8+? (Hg-1223) high-Tc superconductor rather than Bi2Sr2CaCu2O8+? (Bi-2212) one.
基金supported by the National Key R&D Program of China(2017YFA0303001 and 2016YFA0300201)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB25010100)+2 种基金the National Natural Science Foundation of China(11888101 and 11534010)Science Challenge Project(TZ2016004)Hefei Science Center CAS(2016HSC-IU001)
文摘Superconductivity beyond electron-phonon mechanism is always twisted with magnetism. Based on a new field-effect transistor with solid ion conductor as the gate dielectric(SIC-FET), we successfully achieve an electric-field-controlled phase transition between superconductor and ferromagnetic insulator in(Li,Fe)OHFeSe. A dome-shaped superconducting phase with optimal T_c of 43K is continuously tuned into a ferromagnetic insulating phase, which exhibits an electric-field-controlled quantum critical behavior. The origin of the ferromagnetism is ascribed to the order of the interstitial Fe ions expelled from the(Li,Fe)OH layers by gating-controlled Li injection. These surprising findings offer a unique platform to study the relationship between superconductivity and ferromagnetism in Fe-based superconductors. This work also demonstrates the superior performance of the SIC-FET in regulating physical properties of layered unconventional superconductors.
基金the National NaturalScience Foundation of China (Grant No. 59801006) the Key Teacher Supporting Project (Grant No. G00032) +1 种基金and the Starting Foundation of Returned Researchers of the National Education Committee and Tianjin Youth Science Foundatio
文摘We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal-insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal particles. The theoretical and experimental results including electrical resistivity, magnetoresistance and their temperature dependence are described. Limitations to the applications of the ferromagnetic metal-insulator granular films are also discussed. Additionally, a brief survey of another two magnetic properties, high- frequency property and giant Hall effect (GHE) associated strongly with the granular structures is also presented.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11174343 and 11134008)the National Basic Research Program of China(Grant Nos. 2013CB921702 and 2009CB929400)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘Quantum Hall effect (QHE), as a class of quantum phenomena that occur in macroscopic scale, is one of the most important topics in condensed matter physics. It has long been expected that QHE may occur without Landau levels so that neither external magnetic field nor high sample mobility is required for its study and application, Such a QHE free of Landau levels, can appear in topological insulators (TIs) with ferromagnetism as the quantized version of the anomalous Hall effect, i.e., quantum anomalous Hall (QAH) effect. Here we review our recent work on experimental realization of the QAH effect in magnetically doped TIs. With molecular beam epitaxy, we prepare thin films of Cr-doped (Bi,Sb)2Te3 TIs with well- controlled chemical potential and long-range ferromagnetic order that can survive the insulating phase. In such thin films, we eventually observed the quantization of the Hall resistance at h/e2 at zero field, accompanied by a considerable drop in the longitudinal resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall resistance remains at the quantized value. The realization of the QAH effect provides a foundation for many other novel quantum phenomena predicted in TIs, and opens a route to practical applications of quantum Hall physics in low-power-consumption electronics.
基金the National Natural Science Foundation of China(Grant No.11174343)the Ministry of Science and Technology of Chinathe Chinese Academy of Sciences
文摘High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surface states are insensitive to Cr doping, and a perfect robust long-range ferromagnetic order is unveiled in epitaxial Sb2 xCrxTe3 films. The anomalous Hall effect is modulated by applying a bottom gate, contrary to the ferromagnetism in conventional diluted magnetic semiconductors (DMSs), here the coercivity field is not significantly changed with decreasing cartier density. Carrier-independent ferromag- netism heralds Sbz_xCrxTe3 films as the base candidate TI material to realize the quantum anomalous Hall (QAH) effect. These results also indicate the potential of controlling anomalous Hall voltage in future TI-based magneto-electronics and spintronics.
基金the China Postdoctoral Science Foundation(Grant No.2021M701829)It was also sup-ported by the Natural Science Foundation of Gansu Province in China(Grant No.22JR5RA484)+2 种基金Fundamental Research Funds for the Central University(Nos.lzujbky-2021-61 and SWU-KT22001)State Key Laboratory of New Ceramic and Fine Processing Ts-inghua University(No.KF202118)The authors would like to thank Tsinghua-Deqing Joint Research center for Materials Design and Industrial Innovation for the support.The authors would like to thank Shiyanjia Lab(www.shiyanjia.com)for the support provided for hydrogen generation,SS-SPV measurement,ESR test,DFT cal-culations,and modification polish.
文摘The use of the internal magnetic field of ferromagnets can effectively promote charge separation and transfer(CST)in photoelectrochemical energy conversion.However,photoelectrochemical materials with a ferromagnetic field are scarce,and the internal magnetic field is negligible in nonferromagnetic mate-rials.To address this issue,we propose a rational method for preparing ferromagnetic TiO_(2)powder using controllable oxygen vacancies in anatase TiO_(2)with co-exposed{001}and{101}facets.Accordingly,an ex-cellent saturation magnetisation of 0.0014 emu/g in TiO_(2)is achieved owing to an asymmetric and uneven charge distribution.Compared with that of nonferromagnetic TiO_(2),the efficiency of photocatalytic hydro-gen generation of ferromagnetic TiO_(2)is improved by 0.64 times.The enhancement of photocatalytic hy-drogen generation is due to the different forces exerted on the electrons and holes in the magnetic field,which significantly improve the photogenerated CST efficiency of ferromagnetic TiO_(2).This result high-lights the significant role of the synergistic regulation of the crystal structure and defects in regulating the ferromagnetic characteristics of materials.The findings of this study provide guidance for leveraging point defects to promote CST for high-efficiency solar-energy conversion systems.
基金financially supported by the starting grant of Shanghai Tech Universitythe support from Science and Technology Commission of Shanghai Municipality (Grant No. 21PJ410800)。
文摘Magnetically doped topological insulator(TI) thin films and related heterostructures have been extensively studied for years due to their exotic quantum transport properties and potential applications in low-dissipation electronic devices and quantum computation.The selection of magnetic dopants is crucial to realize a high-quality magnetic TI with a robust ferromagnetic ordering and a preserved topological band structure.In this paper,we briefly review the recent magnetic domain imaging works in vanadium-doped magnetic topological insulator thin films and heterostructures.Using cryogenic magnetic force microscopy and in situ transport measurements,a ferromagnetic domain behavior has been demonstrated in V-doped Sb2Te3(ST) and Cr,V co-doped(Bi,Sb)2Te3(BST) thin films.The direct visualization of long-range ferromagnetic ordering in a quantum anomalous Hall(QAH) system sheds light on enhancing the QAH temperature by improving the ferromagnetism.Taking advantage of the different coercivity of Cr-and V-doped BST films,an axion insulating state has been observed in Cr-doped BST/BST/V-doped BST sandwich heterostructures.The antiparallel magnetization alignment,which is the key ingredient for realization of axion insulating state,has been directly visualized via magnetic imaging at various magnetic fields.The V-doped ST/ST heterostructures also provide a platform for Berry phase engineering in momentum space.By suppressing the anomalous Hall effect in such heterostructures,an intrinsic topological Hall effect can be revealed,which resolved the long-term puzzle of the origin of THE in the ultrathin ferromagnetic thin films and two-dimensional ferromagnets.The review of magnetic domain imaging in vanadium-doped topological insulators and heterostructures inspires further exploration of quantum transport properties in magnetic topological insulators and deepens the understanding of the interplay between the magnetic ordering and topological electronic band structures in magnetic TIs and beyond.
基金support by the National Key R&D Program of China (2021YFA1400100)the National Natural Science Foundation of China (11827805 and 12150003)+12 种基金Shanghai Municipal Science and Technology Major Project (2019SHZDZX01)support by the National Key R&D Program of China (2018YFE0202600)Beijing Natural Science Foundation (Z200005)support from JSPS KAKENHI (19H05790, 20H00354, and 21H05233)A3 Foresight by JSPSfinancial support from the National Natural Science Foundation of China (11874115)financial support from the Ministry of Science and Technology (MOST) of China (2018YFE0202700)the National Natural Science Foundation of China (11974422)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30000000)the Fundamental Research Funds for the Central Universities, Chinathe Research Funds of Renmin University of China (22XNKJ30)supported by the National Natural Science Foundation of China (12104504)the China Postdoctoral Science Foundation (2021 M693479)。
文摘In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. Here, utilizing highly sensitive susceptometry of scanning superconducting quantum interference device microscopy, we probe the spin correlations of ABC-stacked Cr Br3under zero magnetic field. We identify a plateau feature in susceptibility above the critical temperature(TC) in thick samples.It signifies a crossover regime induced by the competition between easy-plane intralayer exchange anisotropy versus uniaxial interlayer anisotropy. The evolution of the critical behavior from the bulk to 2D shows that the competition between the anisotropies is magnified in the reduced dimension. It leads to a strongly frustrated ferromagnetic transition in the bilayer with fluctuation on the order of TC, which is distinct from both the monolayer and the bulk. Our observation demonstrates unconventional 2D critical behavior on a honeycomb lattice.