The implanted ion range, the depth profile and the film sttucture of the implanted layer were studied; the carrier concentration and the mobility were measured; the conductivity mechanism of the film implanted Fe into...The implanted ion range, the depth profile and the film sttucture of the implanted layer were studied; the carrier concentration and the mobility were measured; the conductivity mechanism of the film implanted Fe into Al_2O_3 ceramic was discussed. The conclusion is that the implanted Fe^(2+) ions move into Al_2O_3 lattice and replace Al^(3+) to form subs- titution impurities so that the ion implanted lat- tice, as compared with the original one, presents an effective negative charge which forms a negative charge center. A vacancy is bound arround it, and an acceptor is introduced in the forbidden band.展开更多
A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained...A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained show that the removal efficiency of H2S can always reach 100% in a 300 mm scrubbing column with four sieve plates, and the regeneration of ferric ions in 200 mm bubble column can match the consumed ferric species in absorption. Removal of H2S, production of elemental sulfur and regeneration of ferric, cupric ions can all be accomplished at the same time. No raw material is consumed except O2 in flue gas or air, the process has no secondary pollution and no problem of catalyst degradation and congestion.展开更多
A novel Ni doped carbon quantum dots(Ni-CQDs)fluorescence probe was synthesized by facile electrolysis of monoatomic Ni dispersed porous carbon(Ni–N–C).The obtained Ni-CQDs showed a high quantum yield of 6.3%with th...A novel Ni doped carbon quantum dots(Ni-CQDs)fluorescence probe was synthesized by facile electrolysis of monoatomic Ni dispersed porous carbon(Ni–N–C).The obtained Ni-CQDs showed a high quantum yield of 6.3%with the strongest excitation and emission peaks of 360 nm and 460 nm,and maintained over 90%of the maximum fluorescence intensity in a wide p H range of 3–12.The metal ions detectability of Ni-CQDs was enhanced by Ni doping and functional groups modification,and the rapid and selective detection of Fe^(3+)and Cu^(2+)ions was achieved with Ni-CQDs through dynamic and static quenching mechanism,respectively.On one hand,the energy band gap of Ni-CQDs was regulated by Ni doping,so that excited electrons in Ni-CQDs were able to transfer to Fe^(3+)easily.On the other hand,the abundant functional groups promoted the generation of static quenching complexation between Cu^(2+)and Ni-CQDs.In metal ions detection,the linear quantitation range of Fe^(3+)and Cu^(2+)were 100–1000μM(R^(2)=0.9955)and 300–900μM(R^(2)=0.9978),respectively.The limits of detection(LOD)were calculated as 10.17 and 7.88μM,respectively.Moreover,the fluorescence quenched by Cu^(2+)could be recovered by EDTA2-due to the destruction of the static quenching complexation.In this way,NiCQDs showed the ability to identify the two metal ions to a certain degree under the condition of Fe^(3+)and Cu^(2+)coexistent.This work paves the way of facile multiple metal ion detection with high sensitivity.展开更多
制备了不同阳离子掺杂改性的针铁矿,并采用XRD、红外、热重差热分析以及TEM等手段对其进行了表征,结果显示,掺入Mn^(2+)、Cr^(3+)、Al^(3+)后并未明显改变α-FeOOH的晶体结构类型,说明部分阳离子掺杂进入α-FeOOH晶格,从而分别形成因Fe^...制备了不同阳离子掺杂改性的针铁矿,并采用XRD、红外、热重差热分析以及TEM等手段对其进行了表征,结果显示,掺入Mn^(2+)、Cr^(3+)、Al^(3+)后并未明显改变α-FeOOH的晶体结构类型,说明部分阳离子掺杂进入α-FeOOH晶格,从而分别形成因Fe^(3+)被Mn^(2+)、Cr^(3+)、Al^(3+)部分取代的固溶体;红外分析也得到类似结果;热重和差热分析以及TEM观察结果均表明几种金属阳离子没有形成氧化物相,可以确定这些离子已经进入针铁矿的晶格;紫外-可见漫反射光谱分析发现Mn^(2+)、Cr^(3+)掺杂者的能带隙较之纯相针铁矿的稍小,依次为2.18 e V和2.24 e V;而Al^(3+)掺杂者的能带隙与纯相针铁矿相比有所提高,增加至2.34 e V。此外还考查了不同阳离子掺杂及纯相针铁矿与Fe(Ⅱ)构成的复合系统对邻硝基苯酚(2-NP)的还原效果,研究表明,在溶液pH=6和25℃等的条件下,上述还原转化反应符合准一级动力学方程。其中,Fe(Ⅱ)/Al^(3+)掺杂针铁矿复合系统对2-NP的降解效果最好,在120 min时就达到了100%去除率,在一定浓度范围内,随着2-NP浓度的升高,2-NP的还原速率降低。而且,Fe(Ⅱ)/Al^(3+)-针铁矿复合系统速率常数(k)随着溶液的pH值增大而升高。展开更多
Highly active and stable electrocatalysts are mandatory for developing high-performance and longlasting fuel cells.The current study demonstrates a high oxygen reduction reaction(ORR)electrocatalytic activity of a nov...Highly active and stable electrocatalysts are mandatory for developing high-performance and longlasting fuel cells.The current study demonstrates a high oxygen reduction reaction(ORR)electrocatalytic activity of a novel spinel-structured LaFe_(2)O_(4)via a self-doping strategy.The LaFe_(2)O_(4)demonstrates excellent ORR activity in a protonic ceramic fuel cell(PCFC)at temperature range of 350-500℃.The high ORR activity of LaFe_(2)O_(4)is mainly attributed to the facile release of oxide and proton ions,and improved synergistic incorporation abilities associated with interplay of multivalent Fe^(3+)/Fe^(2+)and La^(3+)ions.Using LaFe_(2)O_(4)as cathode over proton conducting BaZr_(0.4)Ce_(0.4)Y_(0.2)O_(3)(BZCY)electrolyte,the fuel cell has delivered a high-power density of 806 mW/cm^(2)operating at 500℃.Different spectroscopic and calculations methods such as UV-visible,Raman,X-ray photoelectron spectroscopy and density functional theory(DFT)calculations were performed to screen the potential application of LaFe_(2)O_(4)as cathode.This study would help in developing functional cobalt-free ORR electrocatalysts for low temperature-PCFCs(LT-PCFCs)and solid oxide fuel cells(SOFCs)applications.展开更多
Fluorescence imaging techniques represent essential tools in in vitro,preclinical,and clinical studies.In this study,an improved one-step hydrothermal method to synthesize citric acid(CA)modifiedα-NaYbF_(4):2%Er^(3+)...Fluorescence imaging techniques represent essential tools in in vitro,preclinical,and clinical studies.In this study,an improved one-step hydrothermal method to synthesize citric acid(CA)modifiedα-NaYbF_(4):2%Er^(3+)nanocrystals was proposed.The introduction of various doping ions into NaYbF_(4):2%Er^(3+)and the different valence states of the same ions affect both the crystal size and upconversion luminesce nce.There fore,we investigated the upconversion luminesce nce enha ncement of NaYbF_(4):2%Er^(3+)by ion doping and find that the upconversion luminescence intensity of the upconversion nanoparticles(UCNPs)co-doped with 5 mol%Fe^(2+)ions shows the greatest enhancement,especially for red emission at654 nm.Furthermore,HeLa cells incubated with UCNPs allow for imaging with strong red upconversion emission detectio n.Confocal laser scanning microscope(CLSM)fluorescent images of HeLa cells indicate that NaYbF_(4):2%Er/5%Fe^(2+)leads to a clear outline and improves visualization of the cell morphology.In addition,the CA coated NaYbF_(4):2%Er^(3+)/5%Fe^(2+)nanoparticles and NaYbF_(4):2%Er^(3+)/5%Fe^(2+)show low cytotoxicity in HeLa cells.Organ imaging reveals the efficiency of these UCNPs to analyze the lungs,liver,and spleen.Together,these results indicate that the Cit-NaYbF_(4):2%Er^(3+)/5%Fe^(2+)UCNPs are efficient nanoprobes for fluorescence molecular to mography.展开更多
A long wavelength emission fluorescent(612 nm)chemosensor with high selectivity for H_(2)PO_(4)^(−)ions was designed and synthesized according to the excited state intramolecular proton transfer(ESIPT).The sensor can ...A long wavelength emission fluorescent(612 nm)chemosensor with high selectivity for H_(2)PO_(4)^(−)ions was designed and synthesized according to the excited state intramolecular proton transfer(ESIPT).The sensor can exist in two tautomeric forms(‘keto’and‘enol’)in the presence of Fe^(3+)ion,Fe^(3+)may bind with the‘keto’form of the sensor.Furthermore,the in situ generated GY-Fe^(3+)ensemble could recover the quenched fluorescence upon the addition of H_(2)PO_(4)^(−)anion resulting in an off-on-type sensing with a detection limit of micromolar range in the same medium,and other anions,including F^(−),Cl^(−),Br^(−),I^(−),AcO^(−),HSO^(−)_(4),ClO^(−)_(4)and CN−had nearly no influence on the probing behavior.The test strips based on 2-[2-hydroxy-4-(diethylamino)phenyl]-1H-imidazo[4,5-b]phenazine and Fe^(3+)metal complex(GY-Fe^(3+))were fabricated,which could act as convenient and efficient H_(2)PO_(4)^(−)test kits.展开更多
Objective: To evaluate the influence of fruiting phenological stage on total flavonoid content, antioxidant activity, and antiproliferative effects of Cereus jamacaru(C. jamacaru)(mandacaru) cladodes and fruit. Method...Objective: To evaluate the influence of fruiting phenological stage on total flavonoid content, antioxidant activity, and antiproliferative effects of Cereus jamacaru(C. jamacaru)(mandacaru) cladodes and fruit. Methods: Fruit and cladodes at vegetative and fruiting stage of C. jamacaru were collected. The fruit was dissected and bark, pulp, and seeds were separated. Vegetative and fruiting cladodes, together with bark, pulp, and seeds were used to obtain five hydroalcoholic extracts. The extracts were investigated for total flavonoid content, using AlCl3 colorimetric method, antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging capacity and Fe^(2+) ion chelating activity, and in vitro antiproliferative effects(sarcoma 180 cells) by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2 H-tetrazolium bromide assay. Results: The extract of C. jamacaru cladodes at the fruiting stage showed higher flavonoid content compared to the other extracts. Seed extracts showed the highest antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) assays, and the extract of cladodes at vegetative stage showed better antioxidant activity in Fe^(2+) ion chelating activity. The extract of fruiting cladodes promoted higher antiproliferative effects compared to the other extracts. Conclusions: These findings suggest that fruiting increases the content of flavonoids and antiproliferative effects of C. jamacaru cladodes. Data reinforce the potential use of C. jamacaru cladodes and fruits as natural antioxidants and potent anticancer agent.展开更多
文摘The implanted ion range, the depth profile and the film sttucture of the implanted layer were studied; the carrier concentration and the mobility were measured; the conductivity mechanism of the film implanted Fe into Al_2O_3 ceramic was discussed. The conclusion is that the implanted Fe^(2+) ions move into Al_2O_3 lattice and replace Al^(3+) to form subs- titution impurities so that the ion implanted lat- tice, as compared with the original one, presents an effective negative charge which forms a negative charge center. A vacancy is bound arround it, and an acceptor is introduced in the forbidden band.
文摘A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained show that the removal efficiency of H2S can always reach 100% in a 300 mm scrubbing column with four sieve plates, and the regeneration of ferric ions in 200 mm bubble column can match the consumed ferric species in absorption. Removal of H2S, production of elemental sulfur and regeneration of ferric, cupric ions can all be accomplished at the same time. No raw material is consumed except O2 in flue gas or air, the process has no secondary pollution and no problem of catalyst degradation and congestion.
基金the National Natural Science Foundation of China(Nos.21776302 and 21776308)the Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ033)。
文摘A novel Ni doped carbon quantum dots(Ni-CQDs)fluorescence probe was synthesized by facile electrolysis of monoatomic Ni dispersed porous carbon(Ni–N–C).The obtained Ni-CQDs showed a high quantum yield of 6.3%with the strongest excitation and emission peaks of 360 nm and 460 nm,and maintained over 90%of the maximum fluorescence intensity in a wide p H range of 3–12.The metal ions detectability of Ni-CQDs was enhanced by Ni doping and functional groups modification,and the rapid and selective detection of Fe^(3+)and Cu^(2+)ions was achieved with Ni-CQDs through dynamic and static quenching mechanism,respectively.On one hand,the energy band gap of Ni-CQDs was regulated by Ni doping,so that excited electrons in Ni-CQDs were able to transfer to Fe^(3+)easily.On the other hand,the abundant functional groups promoted the generation of static quenching complexation between Cu^(2+)and Ni-CQDs.In metal ions detection,the linear quantitation range of Fe^(3+)and Cu^(2+)were 100–1000μM(R^(2)=0.9955)and 300–900μM(R^(2)=0.9978),respectively.The limits of detection(LOD)were calculated as 10.17 and 7.88μM,respectively.Moreover,the fluorescence quenched by Cu^(2+)could be recovered by EDTA2-due to the destruction of the static quenching complexation.In this way,NiCQDs showed the ability to identify the two metal ions to a certain degree under the condition of Fe^(3+)and Cu^(2+)coexistent.This work paves the way of facile multiple metal ion detection with high sensitivity.
文摘制备了不同阳离子掺杂改性的针铁矿,并采用XRD、红外、热重差热分析以及TEM等手段对其进行了表征,结果显示,掺入Mn^(2+)、Cr^(3+)、Al^(3+)后并未明显改变α-FeOOH的晶体结构类型,说明部分阳离子掺杂进入α-FeOOH晶格,从而分别形成因Fe^(3+)被Mn^(2+)、Cr^(3+)、Al^(3+)部分取代的固溶体;红外分析也得到类似结果;热重和差热分析以及TEM观察结果均表明几种金属阳离子没有形成氧化物相,可以确定这些离子已经进入针铁矿的晶格;紫外-可见漫反射光谱分析发现Mn^(2+)、Cr^(3+)掺杂者的能带隙较之纯相针铁矿的稍小,依次为2.18 e V和2.24 e V;而Al^(3+)掺杂者的能带隙与纯相针铁矿相比有所提高,增加至2.34 e V。此外还考查了不同阳离子掺杂及纯相针铁矿与Fe(Ⅱ)构成的复合系统对邻硝基苯酚(2-NP)的还原效果,研究表明,在溶液pH=6和25℃等的条件下,上述还原转化反应符合准一级动力学方程。其中,Fe(Ⅱ)/Al^(3+)掺杂针铁矿复合系统对2-NP的降解效果最好,在120 min时就达到了100%去除率,在一定浓度范围内,随着2-NP浓度的升高,2-NP的还原速率降低。而且,Fe(Ⅱ)/Al^(3+)-针铁矿复合系统速率常数(k)随着溶液的pH值增大而升高。
基金Project supported by the National Natural Science Foundation of China(51772080,11604088,51706093)Jiangsu Provence Talent Program(JSSCRC2021491)。
文摘Highly active and stable electrocatalysts are mandatory for developing high-performance and longlasting fuel cells.The current study demonstrates a high oxygen reduction reaction(ORR)electrocatalytic activity of a novel spinel-structured LaFe_(2)O_(4)via a self-doping strategy.The LaFe_(2)O_(4)demonstrates excellent ORR activity in a protonic ceramic fuel cell(PCFC)at temperature range of 350-500℃.The high ORR activity of LaFe_(2)O_(4)is mainly attributed to the facile release of oxide and proton ions,and improved synergistic incorporation abilities associated with interplay of multivalent Fe^(3+)/Fe^(2+)and La^(3+)ions.Using LaFe_(2)O_(4)as cathode over proton conducting BaZr_(0.4)Ce_(0.4)Y_(0.2)O_(3)(BZCY)electrolyte,the fuel cell has delivered a high-power density of 806 mW/cm^(2)operating at 500℃.Different spectroscopic and calculations methods such as UV-visible,Raman,X-ray photoelectron spectroscopy and density functional theory(DFT)calculations were performed to screen the potential application of LaFe_(2)O_(4)as cathode.This study would help in developing functional cobalt-free ORR electrocatalysts for low temperature-PCFCs(LT-PCFCs)and solid oxide fuel cells(SOFCs)applications.
基金Project supported by the Natural Science Basic Research Program of Shaanxi Province(2021JZ-43)the Key Program for International Science and Technology Cooperation Projects of Shaanxi Province(2018KWZ-08)+2 种基金the National Key Research and Development Program of China(2019YFC1520904)the Scientific Research Plan of Shannxi Provincial Education Department,China(18JK0780)Ningxia Natural Fund(2023AAC03338)。
文摘Fluorescence imaging techniques represent essential tools in in vitro,preclinical,and clinical studies.In this study,an improved one-step hydrothermal method to synthesize citric acid(CA)modifiedα-NaYbF_(4):2%Er^(3+)nanocrystals was proposed.The introduction of various doping ions into NaYbF_(4):2%Er^(3+)and the different valence states of the same ions affect both the crystal size and upconversion luminesce nce.There fore,we investigated the upconversion luminesce nce enha ncement of NaYbF_(4):2%Er^(3+)by ion doping and find that the upconversion luminescence intensity of the upconversion nanoparticles(UCNPs)co-doped with 5 mol%Fe^(2+)ions shows the greatest enhancement,especially for red emission at654 nm.Furthermore,HeLa cells incubated with UCNPs allow for imaging with strong red upconversion emission detectio n.Confocal laser scanning microscope(CLSM)fluorescent images of HeLa cells indicate that NaYbF_(4):2%Er/5%Fe^(2+)leads to a clear outline and improves visualization of the cell morphology.In addition,the CA coated NaYbF_(4):2%Er^(3+)/5%Fe^(2+)nanoparticles and NaYbF_(4):2%Er^(3+)/5%Fe^(2+)show low cytotoxicity in HeLa cells.Organ imaging reveals the efficiency of these UCNPs to analyze the lungs,liver,and spleen.Together,these results indicate that the Cit-NaYbF_(4):2%Er^(3+)/5%Fe^(2+)UCNPs are efficient nanoprobes for fluorescence molecular to mography.
基金This work was supported by the National Natural Science Foundation of China(Nos.21064006,21262032 and 21161018)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT1177)+2 种基金the Natural Science Foundation of Gansu Province(No.1010RJZA018)the Youth Foundation of Gansu Province(No.2011GS04735)NWNU-LKQN-11-32.
文摘A long wavelength emission fluorescent(612 nm)chemosensor with high selectivity for H_(2)PO_(4)^(−)ions was designed and synthesized according to the excited state intramolecular proton transfer(ESIPT).The sensor can exist in two tautomeric forms(‘keto’and‘enol’)in the presence of Fe^(3+)ion,Fe^(3+)may bind with the‘keto’form of the sensor.Furthermore,the in situ generated GY-Fe^(3+)ensemble could recover the quenched fluorescence upon the addition of H_(2)PO_(4)^(−)anion resulting in an off-on-type sensing with a detection limit of micromolar range in the same medium,and other anions,including F^(−),Cl^(−),Br^(−),I^(−),AcO^(−),HSO^(−)_(4),ClO^(−)_(4)and CN−had nearly no influence on the probing behavior.The test strips based on 2-[2-hydroxy-4-(diethylamino)phenyl]-1H-imidazo[4,5-b]phenazine and Fe^(3+)metal complex(GY-Fe^(3+))were fabricated,which could act as convenient and efficient H_(2)PO_(4)^(−)test kits.
基金supported by grants from FAPES(Fundacao de Amparo a Pesquisa e Inovacao do Espirito Santo)-term of grant 225/2015
文摘Objective: To evaluate the influence of fruiting phenological stage on total flavonoid content, antioxidant activity, and antiproliferative effects of Cereus jamacaru(C. jamacaru)(mandacaru) cladodes and fruit. Methods: Fruit and cladodes at vegetative and fruiting stage of C. jamacaru were collected. The fruit was dissected and bark, pulp, and seeds were separated. Vegetative and fruiting cladodes, together with bark, pulp, and seeds were used to obtain five hydroalcoholic extracts. The extracts were investigated for total flavonoid content, using AlCl3 colorimetric method, antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging capacity and Fe^(2+) ion chelating activity, and in vitro antiproliferative effects(sarcoma 180 cells) by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2 H-tetrazolium bromide assay. Results: The extract of C. jamacaru cladodes at the fruiting stage showed higher flavonoid content compared to the other extracts. Seed extracts showed the highest antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) assays, and the extract of cladodes at vegetative stage showed better antioxidant activity in Fe^(2+) ion chelating activity. The extract of fruiting cladodes promoted higher antiproliferative effects compared to the other extracts. Conclusions: These findings suggest that fruiting increases the content of flavonoids and antiproliferative effects of C. jamacaru cladodes. Data reinforce the potential use of C. jamacaru cladodes and fruits as natural antioxidants and potent anticancer agent.