In this paper, Fenton process was determined to be an effective technique to treat the refractory Nonylphenol ethoxylates (NPEOs) wastewater. The COD removal efficien-cies above 89% were obtained when the initial COD ...In this paper, Fenton process was determined to be an effective technique to treat the refractory Nonylphenol ethoxylates (NPEOs) wastewater. The COD removal efficien-cies above 89% were obtained when the initial COD concentration was 12000mg/L. However, A large number of ferric sludge (SS=8.724g/L) would be produced after the Fenton oxidation of the wastewater and must be disposed appropriately. A novel process for Fenton sludge reused by low-cost ferrous sulfide (FeS) was also investi-gated. Experimental results show that the Fenton sludge could be reduced to produce a certain amount of Fe2+ in the acidic mixed liquor by ferrous sulfide. This mixed liquor from Fenton sludge could be used as the new catalyst in the Fenton process and was also highly effective for the NPEOs wastewater treatment. The residual ferrous sulfide from the mixed liquor could be used for the next batch of the展开更多
The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the...The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.展开更多
为揭示FeS引起油气储罐和炼油设备着火、爆炸事故的机制,以防治FeS自燃,分析活性FeS氧化发火特性,构建自燃反应表观动力学模型。首先,利用差热天平测定室温时样品放热变化及热重变化,分析样品自燃发火倾向性及化学反应机制;然后,研究氧...为揭示FeS引起油气储罐和炼油设备着火、爆炸事故的机制,以防治FeS自燃,分析活性FeS氧化发火特性,构建自燃反应表观动力学模型。首先,利用差热天平测定室温时样品放热变化及热重变化,分析样品自燃发火倾向性及化学反应机制;然后,研究氧气及空气气氛对FeS自燃反应的影响。首次通过试验证实,活性FeS在室温时即可与纯氧气或空气中的氧快速反应并释放大量热,且极易自燃;首次利用FWO法开展FeS室温下自燃反应表观动力学研究。研究结果表明:活性FeS样品在氧气中的自燃反应主要产物为Fe_2O_3,Fe_2(SO_4)_3和SO_2,表观活化能为57.101 k J/mol;在空气中的自燃反应主要产物为Fe_2O_3,S和SO_2,表观活化能为89.471 k J/mol。展开更多
文摘In this paper, Fenton process was determined to be an effective technique to treat the refractory Nonylphenol ethoxylates (NPEOs) wastewater. The COD removal efficien-cies above 89% were obtained when the initial COD concentration was 12000mg/L. However, A large number of ferric sludge (SS=8.724g/L) would be produced after the Fenton oxidation of the wastewater and must be disposed appropriately. A novel process for Fenton sludge reused by low-cost ferrous sulfide (FeS) was also investi-gated. Experimental results show that the Fenton sludge could be reduced to produce a certain amount of Fe2+ in the acidic mixed liquor by ferrous sulfide. This mixed liquor from Fenton sludge could be used as the new catalyst in the Fenton process and was also highly effective for the NPEOs wastewater treatment. The residual ferrous sulfide from the mixed liquor could be used for the next batch of the
基金financially supported by the Yunnan Major Scientific and Technological Projects,China (No.202202AG050015)the National Natural Science Foundation of China (No.51464029)。
文摘The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.
基金Project(2019YFC1803603)supported by the National Key R&D Program of ChinaProject(2024JJ4061)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2023ZZTS0517)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘为揭示FeS引起油气储罐和炼油设备着火、爆炸事故的机制,以防治FeS自燃,分析活性FeS氧化发火特性,构建自燃反应表观动力学模型。首先,利用差热天平测定室温时样品放热变化及热重变化,分析样品自燃发火倾向性及化学反应机制;然后,研究氧气及空气气氛对FeS自燃反应的影响。首次通过试验证实,活性FeS在室温时即可与纯氧气或空气中的氧快速反应并释放大量热,且极易自燃;首次利用FWO法开展FeS室温下自燃反应表观动力学研究。研究结果表明:活性FeS样品在氧气中的自燃反应主要产物为Fe_2O_3,Fe_2(SO_4)_3和SO_2,表观活化能为57.101 k J/mol;在空气中的自燃反应主要产物为Fe_2O_3,S和SO_2,表观活化能为89.471 k J/mol。